Solving non-linear ODE

11 次查看(过去 30 天)
I am trying to solve the following differential equation:
The code I am using is:
function EP_equation
syms y(t)
time_range = [0 5];
init_vals = 0.01;
[t, y] = ode45(@(t,y) simple_ode(t,y), time_range, init_vals);
figure
plot(t,y, 'LineWidth', 2)
xlim(time_range)
end
function dRdt = simple_ode(t,R)
dRdt = (1/R + 1/t^0.5);
end
However I am unable to get an answer. Please do let me know if there are things I can do to fix this, or obvious flaws in the code.
Thank you!

采纳的回答

Walter Roberson
Walter Roberson 2021-5-14
Your equation has 1/sqrt(t) and initial t of 0. That gives you 1/sqrt(0) -> 1/0 -> infinity at the start
EP_equation
ans = 1×2
0.0000 5.0000
Name Size Bytes Class Attributes y 1021x1 8168 double
ans = 1×2
0.0100 6.1108
function EP_equation
syms y(t)
time_range = [eps(realmin) 5];
init_vals = 0.01;
[t, y] = ode45(@(t,y) simple_ode(t,y), time_range, init_vals);
figure
plot(t,y, 'LineWidth', 2)
xlim(time_range)
[min(t), max(t)]
whos y
[min(y), max(y)]
end
function dRdt = simple_ode(t,R)
dRdt = (1/R + 1/t^0.5);
end

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by