How can I demonstrate that a MA(2) process is invertible?

13 次查看(过去 30 天)
I have to solve this exercise: Consider the following MA(2) process yt = 1 − 0.5εt−1 + 0.3εt−2 + εt . Is the moving average process invertible? Explain. Hint: Use Matlab to compute the roots of the relevant polynomial. Can anyone help me?.
Thanks

采纳的回答

Pratyush Roy
Pratyush Roy 2021-5-17
Hi,
Since the constant term does not matter in terms of whether the series converges or diverges, we can ignore it and hence the equation can be written as:
Here z(t) = y(t)-1
Now, the relevant polynomial becomes p(x) = 1-0.5x+0.3x^2;
To check whether the model is invertible or not, we compute the roots of p(x) = 0 using the roots method.
Hope this helps!

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Mathematics 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by