**Similar to the Grouped-Z Project function in ImageJ where you can do Standard Deviation of your data with a group size of 10.
3-Dimensional Matrix and Standard Deviation
4 次查看(过去 30 天)
显示 更早的评论
Hi there,
I have a 3-Dimensional matrix (sizeX, sizeY, 700 Frames). I would like to group the "frames" in groups of 10, so that I can take the standard deviation of each of these groups of frames. E.g. -- Since I have 700 frames (z values), I would like to take the standard deviation of 1:10, then 11:20, then 21:30. For mean, I could just bin them in groups of ten (using for loop and mean function) and get my 70 values. But for standard deviation, I'm not sure how to do this.
采纳的回答
Sulaymon Eshkabilov
2021-5-23
Hi,
Here is a relatively simple solution for the standard deviation calculation:
D = DATA; % DATA of size: X-by-Y-Zs, where Zs = 1:700;
IND = 1:10:700;
for ii=2:numel(IND)
S_D(ii-1) = std2(D(:,:,IND(ii-1):IND(ii))); % Standard deviation
M_D(ii-1)=mean2(D(:,:, IND(ii-1):IND(ii))); % Mean values
end
Good luck.
4 个评论
DGM
2021-5-24
编辑:DGM
2021-5-24
Try this:
D = rand(10,10,100); % random sample data
blocksize = 10; % how many pages to collapse?
npages = size(D,3);
IND = 1:blocksize:npages;
stdpict = zeros(size(D,1),size(D,2),numel(IND));
meanpict = zeros(size(D,1),size(D,2),numel(IND));
for ii=1:numel(IND)
idxrange = IND(ii):(IND(ii)+blocksize-1);
% Standard deviation of block along dim 3
stdpict(:,:,ii) = std(D(:,:,idxrange),0,3);
% Mean of block along dim 3
meanpict(:,:,ii) = sum(D(:,:,idxrange),3)/blocksize;
end
% the indexing will break if npages is not integer-divisible by blocksize
This does operations along dim3 of each block of pages. That sounds like what you're after.
Prior code was also indexing 1:11, 11:21, 21:31, etc, and dropping the last sample block.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Creating and Concatenating Matrices 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!