How to adjust initial condition to nondimensionalization of coupled ODE?

1 次查看(过去 30 天)
Here is the code for dimenional and non-dimensional form of coupled ODEs using ode45, but both results are not agreeing. Please help me in this regard.
close all;clear all;clc;
options = odeset('RelTol',1e-2,'AbsTol',[1e-2 1e-2]);
[T,Y] = ode45(@cbyjw_d,[0 30],[90000, 6000],options);
r = 4;
K = 1000000;
beta = 0.0002;
delta = 0.8;
[T1,Y1] = ode45(@cbyjw_nd,[0 30],[90000/K, 6000*(beta/r)],options);
figure(1);
plot(T,Y(:,1),'b-',T,Y(:,2),'b-.');
hold on;
plot(T1,Y1(:,1),'g-',T1,Y1(:,2),'g-.');
function dy = cbyjw_d(t,y)
dy = zeros(2,1);
A = 0;
r = 4;
K = 1000000;
beta = 0.0002;
alpha = 4e-6;
delta = 0.6;
gamma_B = 130;
gamma_W = 40;
dy(1) = r*y(1)*(1-y(1)/K)-beta*y(1)*y(2)-gamma_B*A*y(1);
dy(2) = alpha*y(1)*y(2)-delta*y(2)-gamma_W*A*y(2);
end
function dy = cbyjw_nd(t,y)
dy = zeros(2,1);
A = 0.02;
r = 4;
K = 1000000;
beta = 0.0002;
alpha = 4e-6;
delta = 0.8;
gamma_B = 130;
gamma_W = 40;
theta = (gamma_B*A)/r;
phi = (gamma_W*A*delta)/beta;
sigma = delta*alpha*K/beta;
exi = delta^2/beta;
dy(1) = y(1)*(1-y(1))-y(1)*y(2)-theta*y(1);
dy(2) = sigma*y(1)*y(2)-exi*y(2)-phi*y(2);
end
For more details about the model and it's non dimensionalized form please visit: Coupled ODEs.
Thanks

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by