Why this classification doesn`t work for tumor brain classification?
2 次查看(过去 30 天)
显示 更早的评论
in bellow code I have used strcmpi for comparing but it doesn`t compare according the features extractions, any one help?
signal1 = img2(:,:);
[cA1,cH1,cV1,cD1] = dwt2(signal1,'db4');
[cA2,cH2,cV2,cD2] = dwt2(cA1,'db4');
[cA3,cH3,cV3,cD3] = dwt2(cA2,'db4');
DWT_feat = [cA3,cH3,cV3,cD3];
G = pca(DWT_feat);
whos DWT_feat;
whos G;
g = graycomatrix(G);
stats = graycoprops(g,'Contrast Correlation Energy Homogeneity');
Contrast = stats.Contrast;
Correlation = stats.Correlation;
Energy = stats.Energy;
Homogeneity = stats.Homogeneity;
Mean = mean2(G);
Standard_Deviation = std2(G);
Entropy = entropy(G);
RMS = mean2(rms(G));
Skewness = skewness(img);
Variance = mean2(var(double(G)));
a = sum(double(G(:)));
Smoothness = 1-(1/(1+a));
Kurtosis = kurtosis(double(G(:)));
Skewness = skewness(double(G(:)));
% Inverse Difference Movement
m = size(G,1);
n = size(G,2);
in_diff = 0;
for i = 1:m
for j = 1:n
temp = G(i,j)./(1+(i-j).^2);
in_diff = in_diff+temp;
end
end
IDM = double(in_diff);
%% Classification
feat = [Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM];
load Trainset.mat
xdata = meas;
group = label;
species = fitcsvm(xdata,group,'HyperparameterOptimizationOptions',struct('showplot',true),'kernelfunction', 'linear','KernelScale',0.5);
species = fitcsvm(xdata,group,'HyperparameterOptimizationOptions',struct('showplot',true));
if strcmpi(species,'MALIGNANT')
helpdlg(' Malignant Tumor ');
disp(' Malignant Tumor ');
elseif strcmpi(species,'BENIGN')
helpdlg(' Benign Tumor ');
disp(' Benign Tumor ');
else
helpdlg('not clear')
end
0 个评论
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!