Iterative Solvers in MATLAB
14 次查看(过去 30 天)
显示 更早的评论
Hello Experts,
I am trying to Solve Ax=B in MATLAB, where A is square matrix of size ~500,000 and B is the vector of same size. I have solved similar equations in COMSOL with iterative solvers like Conjugate Gradient and Algebraic Multigrid Preconditioners.
I have tried many iterative solvers like cgs, bicgs, bicgstab, minres without any preconditioners in MATLAB. But none of them would converge (1e-6). I did not try any preconditioners because I never understood the way to include them in my solver.
Does anyone know how could I implement CG with Algebraic Multigrid Preconditioner in MATLAB? Any other inputs are also welcomed :)
Sanket
1 个评论
Pranav Gupta
2020-5-22
Hello Sanket,
It has been a while, but I am curious about your success with the AMG preconditioner. I have sparse non-Hermitian (complex symmetric) matrices (100000x100000) with density ~0.5% and ILU preconditioners, etc. are not working. I was wondering if you have suggestions for me, because AMG needs a Hermitian matrix, which I don't have.
回答(2 个)
Laura Proctor
2011-5-31
The five-point finite difference approximation to Laplace's equation on a square, two-dimensional domain provides an example. The following statements use the preconditioned conjugate gradient method preconditioner M = R'*R, where R is the incomplete Cholesky factor of A.
A = delsq(numgrid('S',50));
b = ones(size(A,1),1);
tol = 1.e-3;
maxit = 10;
R = cholinc(A,tol);
[x,flag,err,iter,res] = pcg(A,b,tol,maxit,R',R);
Only four iterations are required to achieve the prescribed accuracy.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Creating and Concatenating Matrices 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!