Finding eigenvector with existing eigenvalues

3 次查看(过去 30 天)
I have a really simple example, which I would like to use for a better understanding of Eigenvector calculation in Matlab:
A = [3 6; 4 8]
x1 = [0.75; 1]
x2 = [-2; 1]
λ1 = 11
λ2 = 0
Which code do I have to use to have the simple output of x1 & x2?
I've tried several codes I found but always got a strange output:
CODE 1:
A = [4 1; 3 2];
[V,D] = eig(A);
V1 = V(:,1)
V2 = V(:,2)
OUTPUT 1:
v1 = [0.7071; 0.7071]
v2 = [-0.3162; 0.9487]
CODE 2:
A = [4 1; 3 2];
lambda=eig(A); % you should do it by solving det(A-lambda I)=0
V = ones(2);
for k=1:2
B = A-lambda(k)*eye(size(A));
% select pivot column
[~,j] = max(sum(B.^2,1));
othercolumn = 3-j;
V(j,k) = -B(:,j)\B(:,othercolumn);
end
% Optional: Make eigenvectors l2 norm = 1
V = V ./ sqrt(sum(V.^2,1))
OUTPUT 2:
V = [0.7071 -0.3162; 0.7071 0.9487]
May someone help me to get the mentioned outputs x1 = [0.75; 1] & x2 = [-2; 1]?
Thanks!!
  2 个评论
SALAH ALRABEEI
SALAH ALRABEEI 2021-6-12
you system is not linear indpendent, this means that is infinit eigenvectors. So ur x1 and x2 eig values, are just a case.

请先登录,再进行评论。

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

产品


版本

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by