How to filter noise from a time series without losing important informations?
14 次查看(过去 30 天)
显示 更早的评论
Hello everyone,
as described in the topic I have a time series like this:
Zoomed in you can see there is a lot of noise.
I need to filter the noise in the green rectangle without losing informations like the spike in the green circle.
As can be seen in the frequency domain there is a lot going on.
I have tried smoothing and filtering endlessly with Data Analyser Toobox and the Signal Processing Toolbox. I have tried the Filter Designer just like the filter funktion with various settings like Savitzky-Golay Filter or Exponential Moving Average Filter or Bandpass. But everytime I get rid of the noise I also lose to much important informations.
Can anybody tell if and how I can achive this?
I have attached the data.mat with the time series in case there is someone who likes to try.
Best regards
Fabian
2 个评论
Sharmin Kibria
2021-6-25
编辑:Sharmin Kibria
2021-6-25
Did you try denoising it using the Signal analyzer app? I tried to denoise the signal with symlet 4 wavelet (default setting) and got the attached denoised version. I was able to preserve 98% of the original signal energy in the denoising process. Do you think it is good enough?
Thanks
Sharmin
采纳的回答
Mathieu NOE
2021-6-28
hello
this is my suggestion and the result : as you can see , the large amplitude spikes are not changed by the filtering (perfect overlay with raw data)
clc
clearvars
load('data.mat');
x = data(:,1);
y = data(:,2);
t = data(:,3);
dt = mean(diff(t));
Fs = 1/dt;
ind = find(t>3.9 & t < 4);
t = t(ind);
x = x(ind);
y = y(ind);
samples = length(y);
figure(1)
plot(t,x);
%% "smart" data smoothing
N = 9;
xs = medfilt1(x, N,'truncate');
xs = medfilt1(xs, N,'truncate');
% replace noisy data by smoothed (only low amplitude signal is affected)
ind = find(abs(xs)<1);
xx = x;
xx(ind) = xs(ind);
figure(1)
% plot(t,x,'b',t,xs,'r',t,xx,'g');legend('Raw','Smoothed');
plot(t,x,'b',t,xx,'r');legend('Raw','"smart" Smoothed');
title(['Data samples at Fs = ' num2str(round(Fs)) ' Hz / Smoothed with medfilt1' ]);
grid on
2 个评论
Mathieu NOE
2021-6-28
hello
even simpler code , only one stage of filtering , and noisy low amplitude signal simply replaced by zeros
clc
clearvars
load('data.mat');
x = data(:,1);
y = data(:,2);
t = data(:,3);
dt = mean(diff(t));
Fs = 1/dt;
ind = find(t>3.9 & t < 4);
t = t(ind);
x = x(ind);
y = y(ind);
samples = length(y);
figure(1)
plot(t,x);
%% "smart" data smoothing
N = 9;
xs = medfilt1(x, N,'truncate');
% replace noisy data by smoothed (only low amplitude signal is affected)
ind = find(abs(xs)>3);
xx = zeros(size(x));
xx(ind) = x(ind);
figure(1)
% plot(t,x,'b',t,xs,'r',t,xx,'g');legend('Raw','Smoothed');
plot(t,x,'b',t,xx,'r');legend('Raw','"smart" Smoothed');
title(['Data samples at Fs = ' num2str(round(Fs)) ' Hz / Smoothed with medfilt1' ]);
grid on
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!