The Loops in the first picture are required, the description is below
1 次查看(过去 30 天)
显示 更早的评论
%% Suppose I have W and Theta, k=1:K .. K=(any value) let say 10
%%
Alfa_k=zeros(1,k);
Alfa_i=zeros(1,k);
Angle_h_w=zeros(1,k);
Angle_g_h_w=zeros(1,k);
n0=zeros(1,k);
for t_1=1:k
Alfa_k(t_1) = 1/(abs(H(t_1,:)*W(:,t_1)));
Angle_h_w(t_1) = angle(H(t_1,:)*W(:,t_1));
Alfa_i(t_1) = 0;
for t_2=1:k
Alfa_i(t_1) = Alfa_i(t_1) + 1/(abs(H(t_2,:)*W(:,t_2)));
end
Alfa_i(t_1) = Alfa_i(t_1) - Alfa_k(t_1); % Sum of Alfa_i
end
L_k = n*(Alfa_k./Alfa_i); % Number of IRS Elements Assigned to UE ..
% Total IRS Elements * Proportion of IRS Elements
r = n-(sum(L_k)); %The Remaining IRS Elements ..
% Are Assigned to The Weakest UE
[argvalue, argmax] = max(Alfa_k);
L_k0=L_k(argmax);
L_k0 = L_k0+r;
[Alfa_m,idx]= sort(Alfa_k, 'descend'); % sort UE
L_m = sort(L_k, 'descend');
F = F(idx,:); % sort the whole matrix using the sort idx
W = W(:,idx); % sort the whole matrix using the sort idx
for t_3=1:k
n0(t_3)=(abs(F(t_3,:)*G*W(:,t_3)))
Angle_g_h_w(t_3) = angle(F(t_3,:)*G*W(:,t_3))
end
[argval, arg_max] = max(n0)
Theta_k = -Angle_h_w-Angle_g_h_w
3 个评论
Image Analyst
2021-12-15
编辑:Image Analyst
2021-12-15
Original question attached
%% Suppose I have W and Theta, k=1:K .. K=(any value) let say 10
%%
Alfa_k=zeros(1,k);
Alfa_i=zeros(1,k);
Angle_h_w=zeros(1,k);
Angle_g_h_w=zeros(1,k);
n0=zeros(1,k);
for t_1=1:k
Alfa_k(t_1) = 1/(abs(H(t_1,:)*W(:,t_1)));
Angle_h_w(t_1) = angle(H(t_1,:)*W(:,t_1));
Alfa_i(t_1) = 0;
for t_2=1:k
Alfa_i(t_1) = Alfa_i(t_1) + 1/(abs(H(t_2,:)*W(:,t_2)));
end
Alfa_i(t_1) = Alfa_i(t_1) - Alfa_k(t_1); % Sum of Alfa_i
end
L_k = n*(Alfa_k./Alfa_i); % Number of IRS Elements Assigned to UE ..
% Total IRS Elements * Proportion of IRS Elements
r = n-(sum(L_k)); %The Remaining IRS Elements ..
% Are Assigned to The Weakest UE
[argvalue, argmax] = max(Alfa_k);
L_k0=L_k(argmax);
L_k0 = L_k0+r;
[Alfa_m,idx]= sort(Alfa_k, 'descend'); % sort UE
L_m = sort(L_k, 'descend');
F = F(idx,:); % sort the whole matrix using the sort idx
W = W(:,idx); % sort the whole matrix using the sort idx
for t_3=1:k
n0(t_3)=(abs(F(t_3,:)*G*W(:,t_3)))
Angle_g_h_w(t_3) = angle(F(t_3,:)*G*W(:,t_3))
end
[argval, arg_max] = max(n0)
Theta_k = -Angle_h_w-Angle_g_h_w
回答(1 个)
Walter Roberson
2021-6-29
Example with your second set of code. The array sizes are constructed to be consistent with your code
k = 5;
m = 3;
M = 7;
H = randi(9, k, M)
W = randi(9, M, k)
n = rand()
F = randi(9, k, m)
G = randi(9, m, M)
Alfa_k=zeros(1,k);
Alfa_i=zeros(1,k);
Angle_h_w=zeros(1,k);
Angle_g_h_w=zeros(1,k);
n0=zeros(1,k);
for t_1=1:k
Alfa_k(t_1) = 1/(abs(H(t_1,:)*W(:,t_1)));
Angle_h_w(t_1) = angle(H(t_1,:)*W(:,t_1));
Alfa_i(t_1) = 0;
for t_2=1:k
Alfa_i(t_1) = Alfa_i(t_1) + 1/(abs(H(t_2,:)*W(:,t_2)));
end
Alfa_i(t_1) = Alfa_i(t_1) - Alfa_k(t_1); % Sum of Alfa_i
end
L_k = n*(Alfa_k./Alfa_i); % Number of IRS Elements Assigned to UE ..
% Total IRS Elements * Proportion of IRS Elements
r = n-(sum(L_k)); %The Remaining IRS Elements ..
% Are Assigned to The Weakest UE
[argvalue, argmax] = max(Alfa_k);
L_k0=L_k(argmax);
L_k0 = L_k0+r;
[Alfa_m,idx]= sort(Alfa_k, 'descend'); % sort UE
L_m = sort(L_k, 'descend');
F = F(idx,:); % sort the whole matrix using the sort idx
W = W(:,idx); % sort the whole matrix using the sort idx
for t_3=1:k
n0(t_3)=(abs(F(t_3,:)*G*W(:,t_3)))
Angle_g_h_w(t_3) = angle(F(t_3,:)*G*W(:,t_3))
end
[argval, arg_max] = max(n0)
Theta_k = -Angle_h_w-Angle_g_h_w
4 个评论
Walter Roberson
2021-6-29
No, I do not know how to make it compatible with the first picture. If I were coding it, I would start over without your existing code.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Multidimensional Arrays 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!