I found the missing part. Since it's in spherical coordinates (m=2), then all left boundary conditions should be ignored which is translated to be Neumann boundary conditions.
No Results from pdepe Solver
1 次查看(过去 30 天)
显示 更早的评论
Hi all,
I am trying to solve a system of multivariables pdes using pdepe solver. Everything seems good, however, the results of all concentration variables do not show any change. One thing I've noticed, the boundary conditions do not appear in the graphs as shown below especially the left ones (all of them are constants CA(0,t)=1CB(0,t)=1, CD(0,t)=2, CC(0,t)=2. I am providing my codes too.
function pdepesolver
clear;
R=1;
tend=1;
m=2;
x=linspace(0,R,2000);
t=linspace(0,tend,1000);
sol=pdepe(m, @pdepet1func,@pdepet1ic, @pdepet1BC, x, t);
A=sol(:,:,1);
B=sol(:,:,2);
D=sol(:,:,3);
C=sol(:,:,4);
figure(1)
surf(x,t,A)
title('concentration of A')
xlabel('x')
ylabel('t')
zlabel('C_A')
figure(2)
surf(x,t,B)
title('concentration of B')
xlabel('x')
ylabel('t')
zlabel('C_B')
figure(3)
surf(x,t,D)
title('concentration of D')
xlabel('x')
ylabel('t')
zlabel('C_D')
figure(4)
surf(x,t,C)
title('concentration of C')
xlabel('x')
ylabel('t')
zlabel('C_C')
function [pl, ql, pr, qr]=pdepet1BC(xl, ul, xr, ur, t)
pl=[ul(1)-1; ul(2)-1; ul(3)-2; ul(4)-2];
ql=[0; 0; 0; 0];
pr=[0;0;0;0];
qr=[1;1;1;1];
function [c,f,s]=pdepet1func(x,t,u,dudx)
DA=0.25;
DB=0.7;
DD=0.15;
DC=0.4;
muA=0.35;
muB=0.5;
muD=0.5;
c=[1; 1; 1; 1];
f=[DA*dudx(1)-(1/(muA*u(1)+muB*u(2)+4*muD*u(3)))*(muA*u(1)*DA*dudx(1)-muA*u(1)*DB*dudx(2)-2*muA*u(1)*DD*dudx(3));
DB*dudx(2)-(1/(muA*u(1)+muB*u(2)+4*muD*u(3)))*(muB*u(2)*DA*dudx(1)-muB*u(2)*DB*dudx(2)-2*muB*u(2)*DD*dudx(3));
DD*dudx(3)-(1/(muA*u(1)+muB*u(2)+4*muD*u(3)))*(2*muD*u(3)*DA*dudx(1)-2*muD*u(3)*DB*dudx(2)-4*muD*u(3)*DD*dudx(3));
DC*dudx(4)];
s=[0; 0; 0; 0];
function u0=pdepet1ic(x)
u0=[0.001;0.001;0.001;0.001];
0 个评论
采纳的回答
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 PDE Solvers 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!