What parameters are optimized by default when the crossval-on name-value pair option is used in the fitrensemble function?
2 次查看(过去 30 天)
显示 更早的评论
For eg, when the following command is used, what parameters/hyperparamters are validated by default when the crossval-on name-value pair option is used in the fitrensemble function?
rng(1);
t = templateTree('MaxNumSplits',1);
Mdl = fitrensemble(X,MPG,'Learners',t,'CrossVal','on');
0 个评论
回答(1 个)
Aditya Patil
2021-7-12
Cross validation splits the data into K partitions. Then it trains the models on the K permutations of (K - 1) sets and validates it on the remaining 1 set. For example, if you use 10-fold validation, it will train on 9 different permutations of the sets, each having 9 sets for training, and 1 for validation.
As such, there is no dependence on the parameters of the model.
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Regression Tree Ensembles 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!