I want to modify the code to plot the Lagrange polynomial interpolation with Chebyshev points. Map the n+ 1 Chebyshev interpolation points from [-1,1] to [2,3]

4 次查看(过去 30 天)
clear
n = 3; % the order of the polynomial
a = 2.0; % left end of the interval
b = 3.0; % right end of the interval
h = (b - a)/n; % interpolation grid size
t = a:h:b; % interpolation points
f = 1./t; % f(x) = 1./x, This is the function evaluated at interpolation points
%%%% pn(x) = \sum f(t_i)l_i(x)
hh = 0.01; % grid to plot the function both f and p
x = a:hh:b;
fexact = 1./x; %exact function f at x
l = zeros(n+1, length(x)); %%%% l(1,:): l_0(x), ..., l(n+1): l_n(x)
nn = ones(n+1, length(x));
d = ones(n + 1, length(x));
for i = 1:n+1
for j = 1:length(x)
nn(i,j) = 1;
d(i,j) = 1;
for k = 1:n+1
if i ~= k
nn(i,j) = nn(i,j) * (x(j) - t(k));
d(i,j) = d(i,j) * (t(i) - t(k));
end
end
l(i,j) = nn(i,j)/d(i,j);
end
end
fapp = zeros(length(x),1);
for j = 1:length(x)
for i=1:n+1
fapp(j) = fapp(j) + f(i)*l(i,j);
end
end
En = 0;
Ed = 0;
for i = 1:length(x)
Ed = Ed + fexact(i)^2;
En = En + (fexact(i) - fapp(i))^2;
end
Ed = sqrt(Ed);
En = sqrt(En);
E = En/Ed;
display(E)
plot(x,fexact,'b*-')
hold on
plot(x,fapp,'ro-' )

回答(1 个)

Abhinaya Kennedy
Abhinaya Kennedy 2024-6-5
Hi Ebtisam,
To use Chebyshev points, replace the line "t = a:h:b;" with this:
t_cheb = cos(linspace(0, pi, n+1));
t = (a + b)/2 + (b - a)/2 * t_cheb;
This generates Chebyshev points in [-1, 1] and maps them to the interval [2, 3]. The rest of the code remains unchanged.

类别

Help CenterFile Exchange 中查找有关 Polynomials 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by