Splitapply command and merge results
3 次查看(过去 30 天)
显示 更早的评论
In general I am using this command "splitapply" in order to find mean (average) of a group of data.
edges=1:0.5:10
[N, edges, bin] = histcounts(B, edges);
mean_B=splitapply(@mean, B, bin) %mean
%B is 100x1 double
But I would like to make a code that will :
1) Group my data into bins from edges : 1:0.5:10 (min=1, max=10 with step equal to 0.5)
2) Compute the means of the values in each bin (lets call it set1).
3) Group my data into bins from edges : 2:1:10 (min=2, max=10 with step equal to 1)
4) Compute the means of the values in each bin (set2).
5) Merge two sets of data
Could you please help me in order to make it?
Thanking you in advance
0 个评论
回答(1 个)
Rik
2021-7-26
The question for you is what you mean by merging, but steps 1 to 4 are below.
%generate example data
B=10*rand(1,100);
edges1=[1 0.5 10];
edges2=[2 1 10];
mean_B_set1=mean_group_data(B,edges1)
mean_B_set2=mean_group_data(B,edges2)
function mean_B=mean_group_data(B,msm)
B(B<msm(1) | B>msm(3))=[];%remove data outside of bounds
edges=msm(1):msm(2):msm(3);
[~, ~, bin] = histcounts(B, edges);
mean_B=splitapply(@mean, B, bin);
if numel(mean_B)<(numel(edges)-1)
mean_B((end+1):(numel(edges)-1))=NaN;%extend to fill all bins
end
end
4 个评论
Rik
2021-7-27
Your desired output will be the third column of the array below.
edges1=[2 1 7 ];
edges2=[2.5 1 6.5];
mean_B_set1=[0.5;1.25;1.6;1.9;3.2];
mean_B_set2=[0.75;1;1.7;2.5];
e1=edges1(1):edges1(2):edges1(3);
e2=edges2(1):edges2(2):edges2(3);
%col 1 contains bin starts, col 2 contains bin ends
%col 3 contains the sets
tmp=[e1(1:(end-1)).' e1(2:end).' mean_B_set1;...
e2(1:(end-1)).' e2(2:end).' mean_B_set2];
output=sortrows(tmp)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Data Preprocessing 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!