Finding the intersection points between two curves
10 次查看(过去 30 天)
显示 更早的评论
I need to find the intersection points of this equation:
this is my code. I dont know what is the best way . Also when I plot in terms of I have some periods but when I plot in terms of β I have only one period. How I can plot it in terms of beta but with nulti perids?
many thanks in advance
h=20;
K=13.6;
l=1148e-6;
g1=fplot(@(beta)tan(beta*l));
hold on
g2=fplot(@(beta)2*h*beta*K/(K^2*beta^2-h^2));
Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.
采纳的回答
Star Strider
2021-7-30
Several options —
h=20;
K=13.6;
l=1148e-6;
f1 = @(beta)tan(beta*l);
f2 = @(beta)2*h*beta*K./(K^2*beta.^2-h^2);
figure
g1 = fplot(f1);
hold on
g2 = fplot(f2);
g3 = fplot(@(beta) f2(beta)-f1(beta), '--'); % Use 'fsolve' On 'g3' To Find The Intersections
Another option:
format long
Xint = interp1(g3.YData, g3.XData, 0)
.
11 个评论
raha ahmadi
2021-7-30
Dear Star Strider As always very thanks. Is there any way to get more answers in the other periods? I need multiple answers With best wishes
Star Strider
2021-7-30
There do not appear to be any other intersections —
h=20;
K=13.6;
l=1148e-6;
f1 = @(beta)tan(beta*l);
f2 = @(beta)2*h*beta*K./(K^2*beta.^2-h^2);
figure
g1 = fplot(f1);
hold on
g2 = fplot(f2);
g3 = fplot(@(beta) f2(beta)-f1(beta), [-50 50], '--'); % Use 'fsolve' On 'g3' To Find The Intersections
grid
format long
Xint = interp1(g3.YData, g3.XData, 0)
Xint =
0
If there sere other intersections, the easiest way to find them would be:
zxi = find(diff(sign(g3.YData)))
zxi = 1×4
99 170 171 242
And to my surprise, it seems that there are more roots!
So to get more precise results:
for k = 1:numel(zxi)
idxrng = (-1:1)+zxi(k); % Index Range For Interpolation
rootval(k) = interp1(g3.YData(idxrng), g3.XData(idxrng), 0);
end
rootval
rootval = 1×4
-1.472819271901502 0 0 1.464295806398758
The slope of ‘g1’ prevents the roots from being symmetrical about the origin.
.
Star Strider
2021-7-31
My pleasure!
If you want to calculate those roots —
h=20;
K=13.6;
l=1148e-6;
g1=fplot(@(betaL)tan(betaL));
hold on
g2=fplot(@(betaL)2*h.*betaL/l*K./(h^2-K^2.*betaL/l.^2));
hold on
f3 = @(betaL) (tan(betaL)) - (2*h.*betaL/l*K./(h^2-K^2.*betaL/l.^2));
g3 = fplot(f3, [-1 1]*20, ':');
zxi = find(diff(sign(g3.YData)));
for k = 1:numel(zxi)
idxrng = (-1:1)+zxi(k); % Index Range For Interpolation
xv(k,:) = interp1(g3.YData(idxrng), g3.XData(idxrng), 0);
yv(k,:) = interp1(g3.XData, g3.YData, xv(k));
end
plot(xv(abs(yv)<1), zeros(size(xv(abs(yv)<1))), 'xr')
hold off
Intersections = table(xv(abs(yv)<1),yv(abs(yv)<1), 'VariableNames',{'x','y'})
Intersections = 14×2 table
x y
_______ ___________
-18.853 3.747e-16
-15.711 -1.4554e-15
-12.569 9.7145e-17
-9.428 2.498e-16
-6.2861 6.5919e-17
-3.1452 7.4593e-17
0 0
0 0
3.1386 -1.8735e-16
6.2802 3.1225e-16
9.4214 -9.1593e-16
12.563 -9.5063e-16
15.704 -5.1348e-16
18.846 -8.3267e-16
.
raha ahmadi
2021-7-31
Dear Star Strider
I really thank you for your help. I learned alot from your code. It is very helpful for me
the period of the tangent function in this case is relatively large so I m confused. Because in each period of tan function I have a intersection point.
Wish you all the best
Star Strider
2021-7-31
As always, my pleasure!
Thank you for your compliment!
I calculated the intersections. I do not understand.
.
raha ahmadi
2021-8-1
编辑:raha ahmadi
2021-8-1
Hi Star Strider sorry about the delay in response, I did not see your comment. I think I know the reason. In the first picture which you and I plotted the blue graph is the tangent function (in spite of what we expect). In this picture the period is very long and if you extend the axes limits you can see the difference between scales. But in the last picture you sent, by changing the scale of argument of tangent made the period of tangent very short.(remember that in the first picture scaling factor is about 1e-6 and this make period very long) I attached the two pictures for convenience
Star Strider
2021-8-1
O.K.
I do not understand the problem or how this relates to the tangent function.
figure
hfp = fplot(@(x) 548*x./(187.7*x.^2-400), [-1 1]*30);
hold on
rootx = interp1(hfp.YData, hfp.XData, 0)
rootx = 0
plot(rootx, 0, 'xr', 'MarkerSize',7.5)
hold off
grid
legend('$f(x)=\frac{548\ x}{187.7\ x^2-400}$', 'Intercept', 'Interpreter','latex', 'Location','best')
The one root is easy enough to calculate.
.
raha ahmadi
2021-8-7
编辑:raha ahmadi
2021-8-7
Hi. very sorry for delay in response. Maybe it relates to roots function. root can find the roots of the polynomials. if you use it for sin for example you only get one root too. How can we fix it?
clc
clear
close all
x=[-1000,1000];
y=sin (x)
roots(y)
Star Strider
2021-8-7
There is nothing to fix.
Look at the results:
x=[-1000,1000]
x = 1×2
-1000 1000
y=sin (x)
y = 1×2
-0.8269 0.8269
roots(y)
ans = 1
so, plotting ‘y’ using polyval:
xv = linspace(-10,10);
pv = polyval(y, xv);
figure
plot(xv, pv)
grid
The reason is readily apparent! The ‘y’ vector corresponds to:
This is a linear relationship with one zero-crossing (root) at .
However,
x = -1000:1000;
y = sin (x);
roots(y)
ans =
1.1126 + 0.0000i
-0.7096 + 0.7046i
-0.7096 - 0.7046i
-0.7074 + 0.7068i
-0.7074 - 0.7068i
-0.7051 + 0.7091i
-0.7051 - 0.7091i
-0.7118 + 0.7024i
-0.7118 - 0.7024i
-0.7029 + 0.7113i
-0.7029 - 0.7113i
-0.7140 + 0.7001i
-0.7140 - 0.7001i
-0.7007 + 0.7135i
-0.7007 - 0.7135i
-0.6984 + 0.7157i
-0.6984 - 0.7157i
-0.7162 + 0.6979i
-0.7162 - 0.6979i
-0.6962 + 0.7179i
-0.6962 - 0.7179i
-0.7184 + 0.6957i
-0.7184 - 0.6957i
-0.7206 + 0.6934i
-0.7206 - 0.6934i
-0.6939 + 0.7200i
-0.6939 - 0.7200i
-0.7227 + 0.6911i
-0.7227 - 0.6911i
-0.6917 + 0.7222i
-0.6917 - 0.7222i
0.7086 + 0.7056i
0.7086 - 0.7056i
0.7041 + 0.7101i
0.7041 - 0.7101i
0.7064 + 0.7078i
0.7064 - 0.7078i
0.7108 + 0.7034i
0.7108 - 0.7034i
0.7019 + 0.7123i
0.7019 - 0.7123i
0.7130 + 0.7012i
0.7130 - 0.7012i
0.6997 + 0.7145i
0.6997 - 0.7145i
0.7152 + 0.6989i
0.7152 - 0.6989i
0.6974 + 0.7167i
0.6974 - 0.7167i
0.7174 + 0.6967i
0.7174 - 0.6967i
0.6952 + 0.7189i
0.6952 - 0.7189i
0.7196 + 0.6944i
0.7196 - 0.6944i
0.6929 + 0.7210i
0.6929 - 0.7210i
-0.6894 + 0.7244i
-0.6894 - 0.7244i
0.7218 + 0.6922i
0.7218 - 0.6922i
0.6906 + 0.7232i
0.6906 - 0.7232i
0.7239 + 0.6899i
0.7239 - 0.6899i
0.6884 + 0.7254i
0.6884 - 0.7254i
0.7261 + 0.6876i
0.7261 - 0.6876i
-0.7249 + 0.6889i
-0.7249 - 0.6889i
0.6861 + 0.7275i
0.6861 - 0.7275i
0.7282 + 0.6853i
0.7282 - 0.6853i
0.6838 + 0.7297i
0.6838 - 0.7297i
0.7304 + 0.6830i
0.7304 - 0.6830i
0.6815 + 0.7318i
0.6815 - 0.7318i
0.7325 + 0.6807i
0.7325 - 0.6807i
0.6792 + 0.7340i
0.6792 - 0.7340i
-0.6871 + 0.7266i
-0.6871 - 0.7266i
0.7347 + 0.6784i
0.7347 - 0.6784i
-0.7292 + 0.6843i
-0.7292 - 0.6843i
-0.7271 + 0.6866i
-0.7271 - 0.6866i
-0.7314 + 0.6820i
-0.7314 - 0.6820i
-0.7335 + 0.6797i
-0.7335 - 0.6797i
-0.6848 + 0.7287i
-0.6848 - 0.7287i
0.6769 + 0.7361i
0.6769 - 0.7361i
0.7368 + 0.6761i
0.7368 - 0.6761i
-0.6825 + 0.7309i
-0.6825 - 0.7309i
0.6746 + 0.7382i
0.6746 - 0.7382i
0.7389 + 0.6738i
0.7389 - 0.6738i
-0.7356 + 0.6774i
-0.7356 - 0.6774i
-0.6802 + 0.7330i
-0.6802 - 0.7330i
-0.7377 + 0.6751i
-0.7377 - 0.6751i
0.6722 + 0.7403i
0.6722 - 0.7403i
0.7410 + 0.6715i
0.7410 - 0.6715i
-0.6779 + 0.7351i
-0.6779 - 0.7351i
-0.6756 + 0.7372i
-0.6756 - 0.7372i
0.6699 + 0.7424i
0.6699 - 0.7424i
0.7431 + 0.6691i
0.7431 - 0.6691i
-0.7399 + 0.6728i
-0.7399 - 0.6728i
-0.6733 + 0.7394i
-0.6733 - 0.7394i
-0.6710 + 0.7415i
-0.6710 - 0.7415i
0.6676 + 0.7445i
0.6676 - 0.7445i
0.7452 + 0.6668i
0.7452 - 0.6668i
0.6652 + 0.7466i
0.6652 - 0.7466i
-0.7420 + 0.6704i
-0.7420 - 0.6704i
-0.6686 + 0.7436i
-0.6686 - 0.7436i
0.6629 + 0.7487i
0.6629 - 0.7487i
0.7473 + 0.6645i
0.7473 - 0.6645i
0.6605 + 0.7508i
0.6605 - 0.7508i
0.7494 + 0.6621i
0.7494 - 0.6621i
0.7515 + 0.6598i
0.7515 - 0.6598i
0.6582 + 0.7529i
0.6582 - 0.7529i
-0.7441 + 0.6681i
-0.7441 - 0.6681i
-0.6663 + 0.7457i
-0.6663 - 0.7457i
-0.7462 + 0.6658i
-0.7462 - 0.6658i
-0.6640 + 0.7478i
-0.6640 - 0.7478i
-0.7483 + 0.6634i
-0.7483 - 0.6634i
-0.6616 + 0.7498i
-0.6616 - 0.7498i
-0.7503 + 0.6611i
-0.7503 - 0.6611i
-0.6593 + 0.7519i
-0.6593 - 0.7519i
0.7535 + 0.6574i
0.7535 - 0.6574i
0.6534 + 0.7570i
0.6534 - 0.7570i
0.6558 + 0.7549i
0.6558 - 0.7549i
0.7556 + 0.6550i
0.7556 - 0.6550i
-0.6569 + 0.7540i
-0.6569 - 0.7540i
-0.7524 + 0.6587i
-0.7524 - 0.6587i
0.6511 + 0.7590i
0.6511 - 0.7590i
0.7577 + 0.6526i
0.7577 - 0.6526i
-0.6545 + 0.7560i
-0.6545 - 0.7560i
-0.7545 + 0.6563i
-0.7545 - 0.6563i
0.6487 + 0.7611i
0.6487 - 0.7611i
0.7597 + 0.6503i
0.7597 - 0.6503i
-0.6521 + 0.7581i
-0.6521 - 0.7581i
-0.7565 + 0.6540i
-0.7565 - 0.6540i
-0.7586 + 0.6516i
-0.7586 - 0.6516i
0.6463 + 0.7631i
0.6463 - 0.7631i
0.7617 + 0.6479i
0.7617 - 0.6479i
-0.6498 + 0.7601i
-0.6498 - 0.7601i
-0.6474 + 0.7622i
-0.6474 - 0.7622i
-0.7606 + 0.6492i
-0.7606 - 0.6492i
-0.7627 + 0.6468i
-0.7627 - 0.6468i
0.6439 + 0.7651i
0.6439 - 0.7651i
0.7638 + 0.6455i
0.7638 - 0.6455i
-0.6450 + 0.7642i
-0.6450 - 0.7642i
0.6415 + 0.7671i
0.6415 - 0.7671i
-0.7647 + 0.6444i
-0.7647 - 0.6444i
0.7658 + 0.6431i
0.7658 - 0.6431i
-0.6426 + 0.7662i
-0.6426 - 0.7662i
0.6391 + 0.7692i
0.6391 - 0.7692i
0.7678 + 0.6407i
0.7678 - 0.6407i
0.6366 + 0.7712i
0.6366 - 0.7712i
-0.7667 + 0.6420i
-0.7667 - 0.6420i
-0.6402 + 0.7682i
-0.6402 - 0.7682i
0.7698 + 0.6383i
0.7698 - 0.6383i
0.6342 + 0.7732i
0.6342 - 0.7732i
-0.6377 + 0.7702i
-0.6377 - 0.7702i
-0.7687 + 0.6396i
-0.7687 - 0.6396i
0.7718 + 0.6358i
0.7718 - 0.6358i
0.6318 + 0.7751i
0.6318 - 0.7751i
0.6293 + 0.7771i
0.6293 - 0.7771i
0.7738 + 0.6334i
0.7738 - 0.6334i
0.7758 + 0.6310i
0.7758 - 0.6310i
-0.6353 + 0.7722i
-0.6353 - 0.7722i
-0.7707 + 0.6372i
-0.7707 - 0.6372i
-0.7727 + 0.6347i
-0.7727 - 0.6347i
-0.6329 + 0.7742i
-0.6329 - 0.7742i
-0.7747 + 0.6323i
-0.7747 - 0.6323i
-0.6305 + 0.7762i
-0.6305 - 0.7762i
-0.7767 + 0.6299i
-0.7767 - 0.6299i
-0.6280 + 0.7782i
-0.6280 - 0.7782i
0.6269 + 0.7791i
0.6269 - 0.7791i
0.7778 + 0.6285i
0.7778 - 0.6285i
-0.7787 + 0.6274i
-0.7787 - 0.6274i
0.6245 + 0.7811i
0.6245 - 0.7811i
-0.6256 + 0.7802i
-0.6256 - 0.7802i
-0.7806 + 0.6250i
-0.7806 - 0.6250i
0.7798 + 0.6261i
0.7798 - 0.6261i
-0.6231 + 0.7821i
-0.6231 - 0.7821i
-0.7826 + 0.6225i
-0.7826 - 0.6225i
0.6220 + 0.7830i
0.6220 - 0.7830i
0.7817 + 0.6236i
0.7817 - 0.6236i
0.7837 + 0.6212i
0.7837 - 0.6212i
-0.6207 + 0.7841i
-0.6207 - 0.7841i
0.6195 + 0.7850i
0.6195 - 0.7850i
-0.7845 + 0.6201i
-0.7845 - 0.6201i
0.7856 + 0.6187i
0.7856 - 0.6187i
-0.6182 + 0.7860i
-0.6182 - 0.7860i
-0.6157 + 0.7880i
-0.6157 - 0.7880i
-0.7865 + 0.6176i
-0.7865 - 0.6176i
-0.7884 + 0.6151i
-0.7884 - 0.6151i
0.6171 + 0.7869i
0.6171 - 0.7869i
0.7876 + 0.6162i
0.7876 - 0.6162i
-0.7903 + 0.6127i
-0.7903 - 0.6127i
-0.6132 + 0.7899i
-0.6132 - 0.7899i
0.6146 + 0.7888i
0.6146 - 0.7888i
-0.7923 + 0.6102i
-0.7923 - 0.6102i
-0.6108 + 0.7918i
-0.6108 - 0.7918i
0.7895 + 0.6138i
0.7895 - 0.6138i
-0.7942 + 0.6077i
-0.7942 - 0.6077i
-0.6083 + 0.7937i
-0.6083 - 0.7937i
0.6121 + 0.7908i
0.6121 - 0.7908i
0.7914 + 0.6113i
0.7914 - 0.6113i
0.7933 + 0.6088i
0.7933 - 0.6088i
0.6096 + 0.7927i
0.6096 - 0.7927i
-0.7961 + 0.6052i
-0.7961 - 0.6052i
-0.6058 + 0.7956i
-0.6058 - 0.7956i
0.7952 + 0.6063i
0.7952 - 0.6063i
-0.7980 + 0.6027i
-0.7980 - 0.6027i
-0.6033 + 0.7975i
-0.6033 - 0.7975i
0.7971 + 0.6038i
0.7971 - 0.6038i
0.6071 + 0.7946i
0.6071 - 0.7946i
-0.7999 + 0.6002i
-0.7999 - 0.6002i
0.7990 + 0.6013i
0.7990 - 0.6013i
0.6046 + 0.7965i
0.6046 - 0.7965i
-0.6008 + 0.7994i
-0.6008 - 0.7994i
0.6021 + 0.7984i
0.6021 - 0.7984i
0.8009 + 0.5988i
0.8009 - 0.5988i
-0.8017 + 0.5977i
-0.8017 - 0.5977i
0.5996 + 0.8003i
0.5996 - 0.8003i
-0.5983 + 0.8013i
-0.5983 - 0.8013i
-0.8036 + 0.5951i
-0.8036 - 0.5951i
0.8028 + 0.5963i
0.8028 - 0.5963i
0.5971 + 0.8022i
0.5971 - 0.8022i
-0.5957 + 0.8032i
-0.5957 - 0.8032i
0.8047 + 0.5937i
0.8047 - 0.5937i
0.5946 + 0.8040i
0.5946 - 0.8040i
-0.8055 + 0.5926i
-0.8055 - 0.5926i
-0.5932 + 0.8050i
-0.5932 - 0.8050i
0.8065 + 0.5912i
0.8065 - 0.5912i
0.5921 + 0.8059i
0.5921 - 0.8059i
-0.8073 + 0.5901i
-0.8073 - 0.5901i
-0.5907 + 0.8069i
-0.5907 - 0.8069i
0.5895 + 0.8078i
0.5895 - 0.8078i
-0.8092 + 0.5875i
-0.8092 - 0.5875i
0.8084 + 0.5887i
0.8084 - 0.5887i
0.5870 + 0.8096i
0.5870 - 0.8096i
-0.8110 + 0.5850i
-0.8110 - 0.5850i
-0.5881 + 0.8088i
-0.5881 - 0.8088i
0.8102 + 0.5861i
0.8102 - 0.5861i
0.5844 + 0.8114i
0.5844 - 0.8114i
-0.8129 + 0.5825i
-0.8129 - 0.5825i
-0.5856 + 0.8106i
-0.5856 - 0.8106i
0.8121 + 0.5836i
0.8121 - 0.5836i
0.5819 + 0.8133i
0.5819 - 0.8133i
0.8139 + 0.5810i
0.8139 - 0.5810i
0.5793 + 0.8151i
0.5793 - 0.8151i
0.8157 + 0.5785i
0.8157 - 0.5785i
-0.8147 + 0.5799i
-0.8147 - 0.5799i
-0.5831 + 0.8124i
-0.5831 - 0.8124i
0.5768 + 0.8169i
0.5768 - 0.8169i
0.5742 + 0.8187i
0.5742 - 0.8187i
0.8175 + 0.5759i
0.8175 - 0.5759i
0.8193 + 0.5733i
0.8193 - 0.5733i
0.8211 + 0.5708i
0.8211 - 0.5708i
-0.5805 + 0.8143i
-0.5805 - 0.8143i
-0.5779 + 0.8161i
-0.5779 - 0.8161i
-0.8165 + 0.5773i
-0.8165 - 0.5773i
0.5716 + 0.8205i
0.5716 - 0.8205i
-0.5754 + 0.8179i
-0.5754 - 0.8179i
-0.8183 + 0.5748i
-0.8183 - 0.5748i
-0.8201 + 0.5722i
-0.8201 - 0.5722i
0.5690 + 0.8223i
0.5690 - 0.8223i
-0.5728 + 0.8197i
-0.5728 - 0.8197i
-0.8219 + 0.5696i
-0.8219 - 0.5696i
-0.5702 + 0.8215i
-0.5702 - 0.8215i
-0.8237 + 0.5670i
-0.8237 - 0.5670i
0.8229 + 0.5682i
0.8229 - 0.5682i
0.5665 + 0.8241i
0.5665 - 0.8241i
-0.5676 + 0.8233i
-0.5676 - 0.8233i
-0.8255 + 0.5644i
-0.8255 - 0.5644i
0.5639 + 0.8259i
0.5639 - 0.8259i
0.8247 + 0.5656i
0.8247 - 0.5656i
-0.8272 + 0.5619i
-0.8272 - 0.5619i
0.5613 + 0.8276i
0.5613 - 0.8276i
0.8265 + 0.5630i
0.8265 - 0.5630i
-0.5651 + 0.8251i
-0.5651 - 0.8251i
0.5587 + 0.8294i
0.5587 - 0.8294i
-0.5625 + 0.8268i
-0.5625 - 0.8268i
0.8282 + 0.5604i
0.8282 - 0.5604i
-0.8290 + 0.5592i
-0.8290 - 0.5592i
0.8300 + 0.5578i
0.8300 - 0.5578i
-0.5599 + 0.8286i
-0.5599 - 0.8286i
-0.8308 + 0.5566i
-0.8308 - 0.5566i
0.8317 + 0.5552i
0.8317 - 0.5552i
-0.5573 + 0.8303i
-0.5573 - 0.8303i
0.5561 + 0.8311i
0.5561 - 0.8311i
-0.8325 + 0.5540i
-0.8325 - 0.5540i
0.8335 + 0.5526i
0.8335 - 0.5526i
-0.5546 + 0.8321i
-0.5546 - 0.8321i
0.5534 + 0.8329i
0.5534 - 0.8329i
0.8352 + 0.5499i
0.8352 - 0.5499i
-0.8342 + 0.5514i
-0.8342 - 0.5514i
-0.5520 + 0.8338i
-0.5520 - 0.8338i
0.5508 + 0.8346i
0.5508 - 0.8346i
-0.8360 + 0.5488i
-0.8360 - 0.5488i
-0.5494 + 0.8356i
-0.5494 - 0.8356i
0.8369 + 0.5473i
0.8369 - 0.5473i
-0.5468 + 0.8373i
-0.5468 - 0.8373i
-0.8377 + 0.5462i
-0.8377 - 0.5462i
0.5482 + 0.8363i
0.5482 - 0.8363i
0.8386 + 0.5447i
0.8386 - 0.5447i
0.5456 + 0.8381i
0.5456 - 0.8381i
-0.5442 + 0.8390i
-0.5442 - 0.8390i
-0.8394 + 0.5435i
-0.8394 - 0.5435i
0.8403 + 0.5421i
0.8403 - 0.5421i
-0.5415 + 0.8407i
-0.5415 - 0.8407i
-0.8411 + 0.5409i
-0.8411 - 0.5409i
0.5429 + 0.8398i
0.5429 - 0.8398i
-0.5389 + 0.8424i
-0.5389 - 0.8424i
-0.8428 + 0.5383i
-0.8428 - 0.5383i
0.8420 + 0.5394i
0.8420 - 0.5394i
0.8437 + 0.5368i
0.8437 - 0.5368i
0.5377 + 0.8432i
0.5377 - 0.8432i
-0.5362 + 0.8441i
-0.5362 - 0.8441i
0.8454 + 0.5341i
0.8454 - 0.5341i
0.5350 + 0.8448i
0.5350 - 0.8448i
-0.5336 + 0.8458i
-0.5336 - 0.8458i
-0.8445 + 0.5356i
-0.8445 - 0.5356i
-0.8461 + 0.5329i
-0.8461 - 0.5329i
0.8471 + 0.5314i
0.8471 - 0.5314i
0.5324 + 0.8465i
0.5324 - 0.8465i
-0.5309 + 0.8474i
-0.5309 - 0.8474i
-0.8478 + 0.5303i
-0.8478 - 0.5303i
0.5297 + 0.8482i
0.5297 - 0.8482i
-0.5283 + 0.8491i
-0.5283 - 0.8491i
0.8488 + 0.5288i
0.8488 - 0.5288i
-0.8495 + 0.5276i
-0.8495 - 0.5276i
0.5270 + 0.8499i
0.5270 - 0.8499i
-0.5256 + 0.8507i
-0.5256 - 0.8507i
-0.8511 + 0.5250i
-0.8511 - 0.5250i
-0.5229 + 0.8524i
-0.5229 - 0.8524i
-0.8528 + 0.5223i
-0.8528 - 0.5223i
-0.5202 + 0.8540i
-0.5202 - 0.8540i
-0.5175 + 0.8557i
-0.5175 - 0.8557i
0.8504 + 0.5261i
0.8504 - 0.5261i
0.5244 + 0.8515i
0.5244 - 0.8515i
0.8521 + 0.5234i
0.8521 - 0.5234i
0.5217 + 0.8531i
0.5217 - 0.8531i
-0.8544 + 0.5196i
-0.8544 - 0.5196i
0.8537 + 0.5208i
0.8537 - 0.5208i
0.5190 + 0.8548i
0.5190 - 0.8548i
-0.8560 + 0.5169i
-0.8560 - 0.5169i
0.8553 + 0.5181i
0.8553 - 0.5181i
0.8570 + 0.5154i
0.8570 - 0.5154i
0.5163 + 0.8564i
0.5163 - 0.8564i
-0.5149 + 0.8573i
-0.5149 - 0.8573i
-0.8577 + 0.5142i
-0.8577 - 0.5142i
0.8586 + 0.5127i
0.8586 - 0.5127i
0.5136 + 0.8580i
0.5136 - 0.8580i
-0.5122 + 0.8589i
-0.5122 - 0.8589i
-0.8593 + 0.5115i
-0.8593 - 0.5115i
0.8602 + 0.5100i
0.8602 - 0.5100i
0.5109 + 0.8596i
0.5109 - 0.8596i
-0.5095 + 0.8605i
-0.5095 - 0.8605i
-0.8609 + 0.5088i
-0.8609 - 0.5088i
0.8618 + 0.5073i
0.8618 - 0.5073i
0.5082 + 0.8612i
0.5082 - 0.8612i
-0.5068 + 0.8621i
-0.5068 - 0.8621i
0.5055 + 0.8628i
0.5055 - 0.8628i
0.8634 + 0.5046i
0.8634 - 0.5046i
-0.8625 + 0.5061i
-0.8625 - 0.5061i
-0.5040 + 0.8637i
-0.5040 - 0.8637i
-0.8640 + 0.5034i
-0.8640 - 0.5034i
0.5028 + 0.8644i
0.5028 - 0.8644i
0.8649 + 0.5019i
0.8649 - 0.5019i
0.8665 + 0.4991i
0.8665 - 0.4991i
0.5001 + 0.8660i
0.5001 - 0.8660i
-0.5013 + 0.8653i
-0.5013 - 0.8653i
-0.8656 + 0.5007i
-0.8656 - 0.5007i
-0.8672 + 0.4980i
-0.8672 - 0.4980i
-0.4986 + 0.8668i
-0.4986 - 0.8668i
-0.8688 + 0.4952i
-0.8688 - 0.4952i
-0.4959 + 0.8684i
-0.4959 - 0.8684i
-0.4932 + 0.8699i
-0.4932 - 0.8699i
-0.4904 + 0.8715i
-0.4904 - 0.8715i
0.4974 + 0.8675i
0.4974 - 0.8675i
0.8681 + 0.4964i
0.8681 - 0.4964i
-0.8703 + 0.4925i
-0.8703 - 0.4925i
0.4946 + 0.8691i
0.4946 - 0.8691i
0.8696 + 0.4937i
0.8696 - 0.4937i
0.8712 + 0.4910i
0.8712 - 0.4910i
0.4919 + 0.8707i
0.4919 - 0.8707i
0.8727 + 0.4882i
0.8727 - 0.4882i
0.4892 + 0.8722i
0.4892 - 0.8722i
0.8742 + 0.4855i
0.8742 - 0.4855i
-0.8718 + 0.4898i
-0.8718 - 0.4898i
0.4864 + 0.8737i
0.4864 - 0.8737i
-0.4877 + 0.8730i
-0.4877 - 0.8730i
-0.8734 + 0.4870i
-0.8734 - 0.4870i
0.4837 + 0.8752i
0.4837 - 0.8752i
0.8758 + 0.4827i
0.8758 - 0.4827i
-0.4849 + 0.8745i
-0.4849 - 0.8745i
-0.4822 + 0.8761i
-0.4822 - 0.8761i
-0.8749 + 0.4843i
-0.8749 - 0.4843i
-0.4794 + 0.8776i
-0.4794 - 0.8776i
-0.8764 + 0.4815i
-0.8764 - 0.4815i
0.8773 + 0.4800i
0.8773 - 0.4800i
0.4809 + 0.8768i
0.4809 - 0.8768i
-0.4767 + 0.8791i
-0.4767 - 0.8791i
-0.8779 + 0.4788i
-0.8779 - 0.4788i
0.4782 + 0.8783i
0.4782 - 0.8783i
0.8788 + 0.4772i
0.8788 - 0.4772i
0.4754 + 0.8798i
0.4754 - 0.8798i
0.8803 + 0.4745i
0.8803 - 0.4745i
-0.8794 + 0.4760i
-0.8794 - 0.4760i
0.4726 + 0.8813i
0.4726 - 0.8813i
0.8818 + 0.4717i
0.8818 - 0.4717i
-0.4739 + 0.8806i
-0.4739 - 0.8806i
0.8832 + 0.4689i
0.8832 - 0.4689i
0.4699 + 0.8827i
0.4699 - 0.8827i
-0.8809 + 0.4733i
-0.8809 - 0.4733i
-0.4712 + 0.8821i
-0.4712 - 0.8821i
0.8847 + 0.4661i
0.8847 - 0.4661i
0.4671 + 0.8842i
0.4671 - 0.8842i
0.8862 + 0.4634i
0.8862 - 0.4634i
0.8876 + 0.4606i
0.8876 - 0.4606i
0.4643 + 0.8857i
0.4643 - 0.8857i
-0.4684 + 0.8835i
-0.4684 - 0.8835i
-0.8824 + 0.4705i
-0.8824 - 0.4705i
-0.8839 + 0.4677i
-0.8839 - 0.4677i
0.4615 + 0.8871i
0.4615 - 0.8871i
-0.4656 + 0.8850i
-0.4656 - 0.8850i
-0.8853 + 0.4649i
-0.8853 - 0.4649i
0.4587 + 0.8886i
0.4587 - 0.8886i
-0.4628 + 0.8865i
-0.4628 - 0.8865i
-0.4600 + 0.8879i
-0.4600 - 0.8879i
-0.8868 + 0.4622i
-0.8868 - 0.4622i
-0.8882 + 0.4594i
-0.8882 - 0.4594i
0.8891 + 0.4578i
0.8891 - 0.4578i
0.4560 + 0.8900i
0.4560 - 0.8900i
0.8905 + 0.4550i
0.8905 - 0.4550i
-0.4572 + 0.8893i
-0.4572 - 0.8893i
-0.8897 + 0.4566i
-0.8897 - 0.4566i
0.8919 + 0.4522i
0.8919 - 0.4522i
0.8933 + 0.4494i
0.8933 - 0.4494i
0.4532 + 0.8914i
0.4532 - 0.8914i
0.8947 + 0.4466i
0.8947 - 0.4466i
-0.4545 + 0.8908i
-0.4545 - 0.8908i
-0.8911 + 0.4538i
-0.8911 - 0.4538i
0.4504 + 0.8928i
0.4504 - 0.8928i
-0.4517 + 0.8922i
-0.4517 - 0.8922i
-0.8925 + 0.4510i
-0.8925 - 0.4510i
0.4476 + 0.8943i
0.4476 - 0.8943i
-0.4488 + 0.8936i
-0.4488 - 0.8936i
0.4447 + 0.8957i
0.4447 - 0.8957i
-0.8939 + 0.4482i
-0.8939 - 0.4482i
-0.8953 + 0.4454i
-0.8953 - 0.4454i
-0.4460 + 0.8950i
-0.4460 - 0.8950i
0.4419 + 0.8971i
0.4419 - 0.8971i
0.8961 + 0.4438i
0.8961 - 0.4438i
-0.8967 + 0.4426i
-0.8967 - 0.4426i
-0.4432 + 0.8964i
-0.4432 - 0.8964i
-0.4404 + 0.8978i
-0.4404 - 0.8978i
0.4391 + 0.8984i
0.4391 - 0.8984i
-0.8981 + 0.4397i
-0.8981 - 0.4397i
-0.4376 + 0.8992i
-0.4376 - 0.8992i
0.4363 + 0.8998i
0.4363 - 0.8998i
-0.8995 + 0.4369i
-0.8995 - 0.4369i
0.8975 + 0.4409i
0.8975 - 0.4409i
-0.4348 + 0.9005i
-0.4348 - 0.9005i
0.4335 + 0.9012i
0.4335 - 0.9012i
0.8989 + 0.4381i
0.8989 - 0.4381i
-0.9009 + 0.4341i
-0.9009 - 0.4341i
0.9003 + 0.4353i
0.9003 - 0.4353i
0.4306 + 0.9025i
0.4306 - 0.9025i
-0.9022 + 0.4313i
-0.9022 - 0.4313i
0.9017 + 0.4325i
0.9017 - 0.4325i
-0.4319 + 0.9019i
-0.4319 - 0.9019i
0.9030 + 0.4296i
0.9030 - 0.4296i
-0.4291 + 0.9033i
-0.4291 - 0.9033i
0.4278 + 0.9039i
0.4278 - 0.9039i
0.9044 + 0.4268i
0.9044 - 0.4268i
-0.9036 + 0.4284i
-0.9036 - 0.4284i
-0.4263 + 0.9046i
-0.4263 - 0.9046i
-0.4234 + 0.9059i
-0.4234 - 0.9059i
0.4249 + 0.9052i
0.4249 - 0.9052i
-0.4206 + 0.9073i
-0.4206 - 0.9073i
0.4221 + 0.9065i
0.4221 - 0.9065i
-0.9049 + 0.4256i
-0.9049 - 0.4256i
0.9057 + 0.4239i
0.9057 - 0.4239i
-0.9062 + 0.4227i
-0.9062 - 0.4227i
0.9070 + 0.4211i
0.9070 - 0.4211i
0.4193 + 0.9079i
0.4193 - 0.9079i
-0.9076 + 0.4199i
-0.9076 - 0.4199i
0.9083 + 0.4182i
0.9083 - 0.4182i
-0.9089 + 0.4170i
-0.9089 - 0.4170i
-0.4177 + 0.9086i
-0.4177 - 0.9086i
0.4164 + 0.9092i
0.4164 - 0.9092i
0.9096 + 0.4154i
0.9096 - 0.4154i
-0.4149 + 0.9099i
-0.4149 - 0.9099i
-0.9102 + 0.4142i
-0.9102 - 0.4142i
0.9109 + 0.4125i
0.9109 - 0.4125i
0.4135 + 0.9105i
0.4135 - 0.9105i
-0.4120 + 0.9112i
-0.4120 - 0.9112i
-0.9115 + 0.4113i
-0.9115 - 0.4113i
0.4107 + 0.9118i
0.4107 - 0.9118i
-0.4091 + 0.9125i
-0.4091 - 0.9125i
-0.9128 + 0.4085i
-0.9128 - 0.4085i
0.4078 + 0.9131i
0.4078 - 0.9131i
0.9122 + 0.4097i
0.9122 - 0.4097i
-0.4063 + 0.9138i
-0.4063 - 0.9138i
-0.9141 + 0.4056i
-0.9141 - 0.4056i
0.9135 + 0.4068i
0.9135 - 0.4068i
0.4049 + 0.9143i
0.4049 - 0.9143i
-0.4034 + 0.9150i
-0.4034 - 0.9150i
0.4021 + 0.9156i
0.4021 - 0.9156i
0.9148 + 0.4039i
0.9148 - 0.4039i
-0.9153 + 0.4027i
-0.9153 - 0.4027i
0.9161 + 0.4011i
0.9161 - 0.4011i
-0.4005 + 0.9163i
-0.4005 - 0.9163i
-0.9166 + 0.3999i
-0.9166 - 0.3999i
-0.9178 + 0.3970i
-0.9178 - 0.3970i
0.3992 + 0.9169i
0.3992 - 0.9169i
0.9173 + 0.3982i
0.9173 - 0.3982i
-0.3976 + 0.9175i
-0.3976 - 0.9175i
-0.9191 + 0.3941i
-0.9191 - 0.3941i
0.9186 + 0.3953i
0.9186 - 0.3953i
0.3963 + 0.9181i
0.3963 - 0.9181i
-0.9203 + 0.3912i
-0.9203 - 0.3912i
0.9198 + 0.3924i
0.9198 - 0.3924i
-0.3948 + 0.9188i
-0.3948 - 0.9188i
0.3934 + 0.9194i
0.3934 - 0.9194i
-0.3919 + 0.9200i
-0.3919 - 0.9200i
-0.9215 + 0.3883i
-0.9215 - 0.3883i
0.3905 + 0.9206i
0.3905 - 0.9206i
0.9210 + 0.3895i
0.9210 - 0.3895i
-0.3890 + 0.9212i
-0.3890 - 0.9212i
0.9222 + 0.3866i
0.9222 - 0.3866i
-0.9227 + 0.3854i
-0.9227 - 0.3854i
0.3876 + 0.9218i
0.3876 - 0.9218i
-0.3861 + 0.9225i
-0.3861 - 0.9225i
0.3848 + 0.9230i
0.3848 - 0.9230i
-0.9240 + 0.3825i
-0.9240 - 0.3825i
0.9235 + 0.3837i
0.9235 - 0.3837i
-0.3832 + 0.9237i
-0.3832 - 0.9237i
0.3819 + 0.9242i
0.3819 - 0.9242i
-0.9251 + 0.3796i
-0.9251 - 0.3796i
-0.3803 + 0.9249i
-0.3803 - 0.9249i
0.9247 + 0.3808i
0.9247 - 0.3808i
-0.9263 + 0.3767i
-0.9263 - 0.3767i
-0.9275 + 0.3738i
-0.9275 - 0.3738i
-0.9287 + 0.3709i
-0.9287 - 0.3709i
0.9258 + 0.3779i
0.9258 - 0.3779i
0.3789 + 0.9254i
0.3789 - 0.9254i
0.9270 + 0.3750i
0.9270 - 0.3750i
-0.3774 + 0.9261i
-0.3774 - 0.9261i
0.3760 + 0.9266i
0.3760 - 0.9266i
-0.3745 + 0.9272i
-0.3745 - 0.9272i
0.9282 + 0.3721i
0.9282 - 0.3721i
0.3731 + 0.9278i
0.3731 - 0.9278i
-0.3716 + 0.9284i
-0.3716 - 0.9284i
0.9294 + 0.3692i
0.9294 - 0.3692i
-0.3686 + 0.9296i
-0.3686 - 0.9296i
0.3702 + 0.9289i
0.3702 - 0.9289i
0.3673 + 0.9301i
0.3673 - 0.9301i
-0.9298 + 0.3680i
-0.9298 - 0.3680i
0.9305 + 0.3662i
0.9305 - 0.3662i
-0.3657 + 0.9307i
-0.3657 - 0.9307i
-0.9310 + 0.3650i
-0.9310 - 0.3650i
0.3644 + 0.9313i
0.3644 - 0.9313i
0.9317 + 0.3633i
0.9317 - 0.3633i
-0.9321 + 0.3621i
-0.9321 - 0.3621i
0.3614 + 0.9324i
0.3614 - 0.9324i
0.9328 + 0.3604i
0.9328 - 0.3604i
0.3585 + 0.9335i
0.3585 - 0.9335i
-0.9333 + 0.3592i
-0.9333 - 0.3592i
0.9339 + 0.3574i
0.9339 - 0.3574i
-0.3628 + 0.9319i
-0.3628 - 0.9319i
-0.3599 + 0.9330i
-0.3599 - 0.9330i
0.3556 + 0.9346i
0.3556 - 0.9346i
-0.9344 + 0.3563i
-0.9344 - 0.3563i
0.9351 + 0.3545i
0.9351 - 0.3545i
-0.3569 + 0.9341i
-0.3569 - 0.9341i
-0.9355 + 0.3533i
-0.9355 - 0.3533i
-0.3540 + 0.9352i
-0.3540 - 0.9352i
0.9362 + 0.3516i
0.9362 - 0.3516i
0.3526 + 0.9358i
0.3526 - 0.9358i
-0.3511 + 0.9364i
-0.3511 - 0.9364i
0.3497 + 0.9369i
0.3497 - 0.9369i
0.9373 + 0.3486i
0.9373 - 0.3486i
-0.9366 + 0.3504i
-0.9366 - 0.3504i
-0.3481 + 0.9374i
-0.3481 - 0.9374i
0.3468 + 0.9380i
0.3468 - 0.9380i
0.9384 + 0.3457i
0.9384 - 0.3457i
-0.9377 + 0.3474i
-0.9377 - 0.3474i
0.3438 + 0.9390i
0.3438 - 0.9390i
0.9394 + 0.3427i
0.9394 - 0.3427i
-0.9388 + 0.3445i
-0.9388 - 0.3445i
-0.3452 + 0.9385i
-0.3452 - 0.9385i
-0.3422 + 0.9396i
-0.3422 - 0.9396i
0.9405 + 0.3398i
0.9405 - 0.3398i
0.3409 + 0.9401i
0.3409 - 0.9401i
-0.9399 + 0.3415i
-0.9399 - 0.3415i
-0.3393 + 0.9407i
-0.3393 - 0.9407i
0.3379 + 0.9412i
0.3379 - 0.9412i
-0.9409 + 0.3386i
-0.9409 - 0.3386i
0.9416 + 0.3368i
0.9416 - 0.3368i
-0.3363 + 0.9417i
-0.3363 - 0.9417i
0.9426 + 0.3339i
0.9426 - 0.3339i
0.3350 + 0.9422i
0.3350 - 0.9422i
-0.9420 + 0.3356i
-0.9420 - 0.3356i
-0.3334 + 0.9428i
-0.3334 - 0.9428i
0.9437 + 0.3309i
0.9437 - 0.3309i
-0.3304 + 0.9438i
-0.3304 - 0.9438i
-0.9430 + 0.3327i
-0.9430 - 0.3327i
0.9447 + 0.3279i
0.9447 - 0.3279i
0.9457 + 0.3250i
0.9457 - 0.3250i
0.9467 + 0.3220i
0.9467 - 0.3220i
0.3320 + 0.9433i
0.3320 - 0.9433i
0.3290 + 0.9443i
0.3290 - 0.9443i
0.3261 + 0.9453i
0.3261 - 0.9453i
-0.3274 + 0.9449i
-0.3274 - 0.9449i
-0.9441 + 0.3297i
-0.9441 - 0.3297i
-0.9451 + 0.3267i
-0.9451 - 0.3267i
-0.3245 + 0.9459i
-0.3245 - 0.9459i
0.3231 + 0.9464i
0.3231 - 0.9464i
-0.9461 + 0.3238i
-0.9461 - 0.3238i
-0.3215 + 0.9469i
-0.3215 - 0.9469i
0.3201 + 0.9474i
0.3201 - 0.9474i
-0.3185 + 0.9479i
-0.3185 - 0.9479i
-0.9471 + 0.3208i
-0.9471 - 0.3208i
-0.9482 + 0.3178i
-0.9482 - 0.3178i
0.9478 + 0.3190i
0.9478 - 0.3190i
0.9488 + 0.3160i
0.9488 - 0.3160i
0.3171 + 0.9484i
0.3171 - 0.9484i
-0.3155 + 0.9489i
-0.3155 - 0.9489i
-0.9491 + 0.3148i
-0.9491 - 0.3148i
0.9497 + 0.3130i
0.9497 - 0.3130i
0.9507 + 0.3101i
0.9507 - 0.3101i
0.9517 + 0.3071i
0.9517 - 0.3071i
0.3142 + 0.9494i
0.3142 - 0.9494i
0.3112 + 0.9504i
0.3112 - 0.9504i
-0.3126 + 0.9499i
-0.3126 - 0.9499i
0.3082 + 0.9513i
0.3082 - 0.9513i
-0.9501 + 0.3119i
-0.9501 - 0.3119i
-0.3096 + 0.9509i
-0.3096 - 0.9509i
-0.9511 + 0.3089i
-0.9511 - 0.3089i
0.3052 + 0.9523i
0.3052 - 0.9523i
-0.3066 + 0.9518i
-0.3066 - 0.9518i
-0.9521 + 0.3059i
-0.9521 - 0.3059i
-0.3036 + 0.9528i
-0.3036 - 0.9528i
0.3022 + 0.9532i
0.3022 - 0.9532i
-0.9530 + 0.3029i
-0.9530 - 0.3029i
-0.3006 + 0.9537i
-0.3006 - 0.9537i
-0.9540 + 0.2999i
-0.9540 - 0.2999i
0.9526 + 0.3041i
0.9526 - 0.3041i
-0.9549 + 0.2969i
-0.9549 - 0.2969i
0.2992 + 0.9542i
0.2992 - 0.9542i
-0.2976 + 0.9547i
-0.2976 - 0.9547i
0.9536 + 0.3011i
0.9536 - 0.3011i
-0.9558 + 0.2939i
-0.9558 - 0.2939i
-0.9568 + 0.2909i
-0.9568 - 0.2909i
0.2962 + 0.9551i
0.2962 - 0.9551i
-0.2946 + 0.9556i
-0.2946 - 0.9556i
0.2932 + 0.9560i
0.2932 - 0.9560i
-0.2916 + 0.9565i
-0.2916 - 0.9565i
0.9545 + 0.2981i
0.9545 - 0.2981i
-0.9577 + 0.2879i
-0.9577 - 0.2879i
0.9555 + 0.2951i
0.9555 - 0.2951i
0.2902 + 0.9570i
0.2902 - 0.9570i
-0.2886 + 0.9574i
-0.2886 - 0.9574i
0.9564 + 0.2921i
0.9564 - 0.2921i
-0.2856 + 0.9584i
-0.2856 - 0.9584i
0.2872 + 0.9579i
0.2872 - 0.9579i
0.9573 + 0.2891i
0.9573 - 0.2891i
0.9582 + 0.2861i
0.9582 - 0.2861i
-0.9586 + 0.2849i
-0.9586 - 0.2849i
-0.2826 + 0.9592i
-0.2826 - 0.9592i
0.2842 + 0.9588i
0.2842 - 0.9588i
-0.9595 + 0.2819i
-0.9595 - 0.2819i
0.9591 + 0.2830i
0.9591 - 0.2830i
0.2812 + 0.9597i
0.2812 - 0.9597i
-0.9603 + 0.2789i
-0.9603 - 0.2789i
-0.9612 + 0.2758i
-0.9612 - 0.2758i
-0.2796 + 0.9601i
-0.2796 - 0.9601i
-0.2766 + 0.9610i
-0.2766 - 0.9610i
0.2782 + 0.9605i
0.2782 - 0.9605i
-0.9621 + 0.2728i
-0.9621 - 0.2728i
-0.2735 + 0.9619i
-0.2735 - 0.9619i
0.2752 + 0.9614i
0.2752 - 0.9614i
0.2721 + 0.9623i
0.2721 - 0.9623i
-0.2705 + 0.9627i
-0.2705 - 0.9627i
0.9600 + 0.2800i
0.9600 - 0.2800i
0.9609 + 0.2770i
0.9609 - 0.2770i
0.9617 + 0.2740i
0.9617 - 0.2740i
0.9634 + 0.2679i
0.9634 - 0.2679i
0.9626 + 0.2710i
0.9626 - 0.2710i
0.9651 + 0.2619i
0.9651 - 0.2619i
0.9643 + 0.2649i
0.9643 - 0.2649i
0.9659 + 0.2588i
0.9659 - 0.2588i
-0.2675 + 0.9636i
-0.2675 - 0.9636i
0.2691 + 0.9631i
0.2691 - 0.9631i
-0.9629 + 0.2698i
-0.9629 - 0.2698i
0.2661 + 0.9640i
0.2661 - 0.9640i
-0.9638 + 0.2668i
-0.9638 - 0.2668i
0.9667 + 0.2558i
0.9667 - 0.2558i
0.9675 + 0.2527i
0.9675 - 0.2527i
-0.2645 + 0.9644i
-0.2645 - 0.9644i
-0.2614 + 0.9652i
-0.2614 - 0.9652i
-0.9646 + 0.2638i
-0.9646 - 0.2638i
-0.2584 + 0.9660i
-0.2584 - 0.9660i
0.2631 + 0.9648i
0.2631 - 0.9648i
-0.9654 + 0.2607i
-0.9654 - 0.2607i
0.2600 + 0.9656i
0.2600 - 0.9656i
-0.9662 + 0.2577i
-0.9662 - 0.2577i
0.2570 + 0.9664i
0.2570 - 0.9664i
0.9683 + 0.2497i
0.9683 - 0.2497i
0.9691 + 0.2467i
0.9691 - 0.2467i
0.9699 + 0.2436i
0.9699 - 0.2436i
0.9706 + 0.2406i
0.9706 - 0.2406i
0.9714 + 0.2375i
0.9714 - 0.2375i
0.9721 + 0.2344i
0.9721 - 0.2344i
0.9729 + 0.2314i
0.9729 - 0.2314i
0.9736 + 0.2283i
0.9736 - 0.2283i
0.2540 + 0.9672i
0.2540 - 0.9672i
-0.2554 + 0.9668i
-0.2554 - 0.9668i
-0.9670 + 0.2547i
-0.9670 - 0.2547i
0.9743 + 0.2253i
0.9743 - 0.2253i
-0.9678 + 0.2516i
-0.9678 - 0.2516i
0.2509 + 0.9680i
0.2509 - 0.9680i
-0.9686 + 0.2486i
-0.9686 - 0.2486i
0.2479 + 0.9688i
0.2479 - 0.9688i
-0.2523 + 0.9676i
-0.2523 - 0.9676i
-0.2493 + 0.9684i
-0.2493 - 0.9684i
0.2448 + 0.9696i
0.2448 - 0.9696i
-0.9694 + 0.2455i
-0.9694 - 0.2455i
-0.2462 + 0.9692i
-0.2462 - 0.9692i
-0.2432 + 0.9700i
-0.2432 - 0.9700i
0.9750 + 0.2222i
0.9750 - 0.2222i
-0.9702 + 0.2425i
-0.9702 - 0.2425i
0.9757 + 0.2191i
0.9757 - 0.2191i
0.9764 + 0.2161i
0.9764 - 0.2161i
0.9771 + 0.2130i
0.9771 - 0.2130i
0.9777 + 0.2099i
0.9777 - 0.2099i
0.9784 + 0.2068i
0.9784 - 0.2068i
0.9790 + 0.2038i
0.9790 - 0.2038i
0.9797 + 0.2007i
0.9797 - 0.2007i
0.2418 + 0.9703i
0.2418 - 0.9703i
-0.9709 + 0.2394i
-0.9709 - 0.2394i
-0.2402 + 0.9707i
-0.2402 - 0.9707i
0.2387 + 0.9711i
0.2387 - 0.9711i
0.9803 + 0.1976i
0.9803 - 0.1976i
-0.9717 + 0.2364i
-0.9717 - 0.2364i
-0.9724 + 0.2333i
-0.9724 - 0.2333i
-0.9731 + 0.2303i
-0.9731 - 0.2303i
-0.2371 + 0.9715i
-0.2371 - 0.9715i
0.2357 + 0.9718i
0.2357 - 0.9718i
-0.2341 + 0.9722i
-0.2341 - 0.9722i
0.2326 + 0.9726i
0.2326 - 0.9726i
-0.2310 + 0.9730i
-0.2310 - 0.9730i
0.2296 + 0.9733i
0.2296 - 0.9733i
-0.2279 + 0.9737i
-0.2279 - 0.9737i
0.9809 + 0.1945i
0.9809 - 0.1945i
0.9815 + 0.1914i
0.9815 - 0.1914i
0.9821 + 0.1883i
0.9821 - 0.1883i
0.9827 + 0.1852i
0.9827 - 0.1852i
0.9833 + 0.1821i
0.9833 - 0.1821i
0.9838 + 0.1790i
0.9838 - 0.1790i
0.9844 + 0.1759i
0.9844 - 0.1759i
0.9849 + 0.1728i
0.9849 - 0.1728i
0.2265 + 0.9740i
0.2265 - 0.9740i
-0.9738 + 0.2272i
-0.9738 - 0.2272i
-0.2249 + 0.9744i
-0.2249 - 0.9744i
-0.9746 + 0.2242i
-0.9746 - 0.2242i
0.9855 + 0.1697i
0.9855 - 0.1697i
-0.9752 + 0.2211i
-0.9752 - 0.2211i
-0.9759 + 0.2180i
-0.9759 - 0.2180i
-0.9766 + 0.2150i
-0.9766 - 0.2150i
-0.2218 + 0.9751i
-0.2218 - 0.9751i
0.2235 + 0.9747i
0.2235 - 0.9747i
-0.2188 + 0.9758i
-0.2188 - 0.9758i
0.2204 + 0.9754i
0.2204 - 0.9754i
-0.2157 + 0.9765i
-0.2157 - 0.9765i
0.2173 + 0.9761i
0.2173 - 0.9761i
0.2143 + 0.9768i
0.2143 - 0.9768i
0.9860 + 0.1666i
0.9860 - 0.1666i
0.9865 + 0.1635i
0.9865 - 0.1635i
0.9870 + 0.1604i
0.9870 - 0.1604i
0.9875 + 0.1573i
0.9875 - 0.1573i
0.9880 + 0.1542i
0.9880 - 0.1542i
0.9885 + 0.1511i
0.9885 - 0.1511i
0.9895 + 0.1449i
0.9895 - 0.1449i
0.9890 + 0.1480i
0.9890 - 0.1480i
-0.9773 + 0.2119i
-0.9773 - 0.2119i
-0.2126 + 0.9771i
-0.2126 - 0.9771i
0.9899 + 0.1417i
0.9899 - 0.1417i
-0.9780 + 0.2088i
-0.9780 - 0.2088i
-0.9786 + 0.2058i
-0.9786 - 0.2058i
-0.9792 + 0.2027i
-0.9792 - 0.2027i
-0.2096 + 0.9778i
-0.2096 - 0.9778i
0.2112 + 0.9774i
0.2112 - 0.9774i
-0.2065 + 0.9784i
-0.2065 - 0.9784i
0.2081 + 0.9781i
0.2081 - 0.9781i
0.2051 + 0.9788i
0.2051 - 0.9788i
-0.2034 + 0.9791i
-0.2034 - 0.9791i
0.2020 + 0.9794i
0.2020 - 0.9794i
0.9903 + 0.1386i
0.9903 - 0.1386i
0.9908 + 0.1355i
0.9908 - 0.1355i
0.9912 + 0.1324i
0.9912 - 0.1324i
0.9916 + 0.1293i
0.9916 - 0.1293i
0.9920 + 0.1261i
0.9920 - 0.1261i
0.9924 + 0.1230i
0.9924 - 0.1230i
0.9928 + 0.1199i
0.9928 - 0.1199i
-0.9799 + 0.1996i
-0.9799 - 0.1996i
0.1989 + 0.9800i
0.1989 - 0.9800i
-0.2003 + 0.9797i
-0.2003 - 0.9797i
0.1958 + 0.9806i
0.1958 - 0.9806i
0.9932 + 0.1167i
0.9932 - 0.1167i
-0.9805 + 0.1965i
-0.9805 - 0.1965i
-0.9811 + 0.1935i
-0.9811 - 0.1935i
-0.9817 + 0.1904i
-0.9817 - 0.1904i
-0.1973 + 0.9804i
-0.1973 - 0.9804i
-0.1942 + 0.9810i
-0.1942 - 0.9810i
-0.1911 + 0.9816i
-0.1911 - 0.9816i
0.1927 + 0.9812i
0.1927 - 0.9812i
0.1897 + 0.9818i
0.1897 - 0.9818i
-0.1880 + 0.9822i
-0.1880 - 0.9822i
0.1866 + 0.9824i
0.1866 - 0.9824i
0.9935 + 0.1136i
0.9935 - 0.1136i
0.9939 + 0.1105i
0.9939 - 0.1105i
0.9942 + 0.1073i
0.9942 - 0.1073i
0.9946 + 0.1042i
0.9946 - 0.1042i
0.9949 + 0.1011i
0.9949 - 0.1011i
0.9952 + 0.0979i
0.9952 - 0.0979i
0.9955 + 0.0948i
0.9955 - 0.0948i
0.9961 + 0.0885i
0.9961 - 0.0885i
0.9958 + 0.0916i
0.9958 - 0.0916i
-0.1849 + 0.9828i
-0.1849 - 0.9828i
0.1835 + 0.9830i
0.1835 - 0.9830i
-0.9823 + 0.1873i
-0.9823 - 0.1873i
-0.9829 + 0.1842i
-0.9829 - 0.1842i
0.9964 + 0.0854i
0.9964 - 0.0854i
0.9966 + 0.0822i
0.9966 - 0.0822i
-0.1818 + 0.9833i
-0.1818 - 0.9833i
-0.9835 + 0.1811i
-0.9835 - 0.1811i
0.1804 + 0.9836i
0.1804 - 0.9836i
0.1773 + 0.9842i
0.1773 - 0.9842i
-0.1788 + 0.9839i
-0.1788 - 0.9839i
-0.1757 + 0.9844i
-0.1757 - 0.9844i
0.9969 + 0.0791i
0.9969 - 0.0791i
0.9971 + 0.0759i
0.9971 - 0.0759i
0.9973 + 0.0728i
0.9973 - 0.0728i
1.0000 + 0.0000i
1.0000 + 0.0032i
1.0000 - 0.0032i
1.0000 + 0.0063i
1.0000 - 0.0063i
1.0000 + 0.0095i
1.0000 - 0.0095i
0.9982 + 0.0601i
0.9982 - 0.0601i
0.9984 + 0.0570i
0.9984 - 0.0570i
0.9999 + 0.0127i
0.9999 - 0.0127i
0.9986 + 0.0538i
0.9986 - 0.0538i
0.9999 + 0.0158i
0.9999 - 0.0158i
0.9980 + 0.0633i
0.9980 - 0.0633i
0.9978 + 0.0664i
0.9978 - 0.0664i
0.9987 + 0.0507i
0.9987 - 0.0507i
0.9998 + 0.0190i
0.9998 - 0.0190i
0.9989 + 0.0475i
0.9989 - 0.0475i
0.9998 + 0.0222i
0.9998 - 0.0222i
-0.9840 + 0.1780i
-0.9840 - 0.1780i
-0.1726 + 0.9850i
-0.1726 - 0.9850i
0.1742 + 0.9847i
0.1742 - 0.9847i
-0.1695 + 0.9855i
-0.1695 - 0.9855i
-0.1664 + 0.9861i
-0.1664 - 0.9861i
-0.9846 + 0.1749i
-0.9846 - 0.1749i
0.1711 + 0.9852i
0.1711 - 0.9852i
0.1680 + 0.9858i
0.1680 - 0.9858i
-0.1633 + 0.9866i
-0.1633 - 0.9866i
-0.9851 + 0.1718i
-0.9851 - 0.1718i
0.1649 + 0.9863i
0.1649 - 0.9863i
0.1618 + 0.9868i
0.1618 - 0.9868i
-0.9857 + 0.1688i
-0.9857 - 0.1688i
-0.9862 + 0.1657i
-0.9862 - 0.1657i
0.9997 + 0.0254i
0.9997 - 0.0254i
0.9990 + 0.0443i
0.9990 - 0.0443i
0.9992 + 0.0412i
0.9992 - 0.0412i
0.9996 + 0.0285i
0.9996 - 0.0285i
-0.1602 + 0.9871i
-0.1602 - 0.9871i
0.1587 + 0.9873i
0.1587 - 0.9873i
-0.9867 + 0.1626i
-0.9867 - 0.1626i
-0.9872 + 0.1595i
-0.9872 - 0.1595i
-0.9877 + 0.1564i
-0.9877 - 0.1564i
0.1556 + 0.9878i
0.1556 - 0.9878i
-0.1571 + 0.9876i
-0.1571 - 0.9876i
0.1525 + 0.9883i
0.1525 - 0.9883i
-0.9882 + 0.1533i
-0.9882 - 0.1533i
-0.1540 + 0.9881i
-0.1540 - 0.9881i
0.1494 + 0.9888i
0.1494 - 0.9888i
-0.1509 + 0.9886i
-0.1509 - 0.9886i
-0.1478 + 0.9890i
-0.1478 - 0.9890i
0.1463 + 0.9892i
0.1463 - 0.9892i
0.1432 + 0.9897i
0.1432 - 0.9897i
-0.1447 + 0.9895i
-0.1447 - 0.9895i
-0.9887 + 0.1502i
-0.9887 - 0.1502i
0.9995 + 0.0317i
0.9995 - 0.0317i
0.9993 + 0.0380i
0.9993 - 0.0380i
0.1401 + 0.9901i
0.1401 - 0.9901i
-0.1416 + 0.9899i
-0.1416 - 0.9899i
0.1370 + 0.9906i
0.1370 - 0.9906i
-0.1385 + 0.9904i
-0.1385 - 0.9904i
-0.9891 + 0.1470i
-0.9891 - 0.1470i
0.9976 + 0.0696i
0.9976 - 0.0696i
0.1339 + 0.9910i
0.1339 - 0.9910i
0.1308 + 0.9914i
0.1308 - 0.9914i
-0.1353 + 0.9908i
-0.1353 - 0.9908i
-0.9896 + 0.1439i
-0.9896 - 0.1439i
-0.9900 + 0.1408i
-0.9900 - 0.1408i
-0.1322 + 0.9912i
-0.1322 - 0.9912i
0.1277 + 0.9918i
0.1277 - 0.9918i
-0.9905 + 0.1377i
-0.9905 - 0.1377i
-0.1291 + 0.9916i
-0.1291 - 0.9916i
-0.9909 + 0.1346i
-0.9909 - 0.1346i
0.1246 + 0.9922i
0.1246 - 0.9922i
-0.1260 + 0.9920i
-0.1260 - 0.9920i
-0.1229 + 0.9924i
-0.1229 - 0.9924i
-0.9913 + 0.1315i
-0.9913 - 0.1315i
-0.9917 + 0.1284i
-0.9917 - 0.1284i
0.1214 + 0.9926i
0.1214 - 0.9926i
0.1183 + 0.9930i
0.1183 - 0.9930i
0.1152 + 0.9933i
0.1152 - 0.9933i
-0.1198 + 0.9928i
-0.1198 - 0.9928i
-0.1167 + 0.9932i
-0.1167 - 0.9932i
-0.1135 + 0.9935i
-0.1135 - 0.9935i
0.9994 + 0.0348i
0.9994 - 0.0348i
0.1121 + 0.9937i
0.1121 - 0.9937i
0.1090 + 0.9940i
0.1090 - 0.9940i
0.1058 + 0.9944i
0.1058 - 0.9944i
-0.1104 + 0.9939i
-0.1104 - 0.9939i
0.1027 + 0.9947i
0.1027 - 0.9947i
-0.1073 + 0.9942i
-0.1073 - 0.9942i
-0.1042 + 0.9946i
-0.1042 - 0.9946i
-0.1010 + 0.9949i
-0.1010 - 0.9949i
-0.9921 + 0.1253i
-0.9921 - 0.1253i
-0.9925 + 0.1222i
-0.9925 - 0.1222i
-0.9929 + 0.1190i
-0.9929 - 0.1190i
-0.9933 + 0.1159i
-0.9933 - 0.1159i
-0.0979 + 0.9952i
-0.0979 - 0.9952i
-0.9936 + 0.1128i
-0.9936 - 0.1128i
-0.9940 + 0.1097i
-0.9940 - 0.1097i
-0.9943 + 0.1066i
-0.9943 - 0.1066i
-0.9946 + 0.1034i
-0.9946 - 0.1034i
0.0996 + 0.9950i
0.0996 - 0.9950i
0.0965 + 0.9953i
0.0965 - 0.9953i
0.0933 + 0.9956i
0.0933 - 0.9956i
-0.0917 + 0.9958i
-0.0917 - 0.9958i
-0.0948 + 0.9955i
-0.0948 - 0.9955i
-0.9950 + 0.1003i
-0.9950 - 0.1003i
-0.9953 + 0.0972i
-0.9953 - 0.0972i
0.0902 + 0.9959i
0.0902 - 0.9959i
-0.0885 + 0.9961i
-0.0885 - 0.9961i
0.0871 + 0.9962i
0.0871 - 0.9962i
0.0777 + 0.9970i
0.0777 - 0.9970i
0.0808 + 0.9967i
0.0808 - 0.9967i
0.0840 + 0.9965i
0.0840 - 0.9965i
-0.9956 + 0.0941i
-0.9956 - 0.0941i
-0.9959 + 0.0909i
-0.9959 - 0.0909i
-0.9961 + 0.0878i
-0.9961 - 0.0878i
-1.0000 + 0.0000i
-0.9964 + 0.0847i
-0.9964 - 0.0847i
-0.9967 + 0.0816i
-0.9967 - 0.0816i
-0.9999 + 0.0126i
-0.9999 - 0.0126i
-1.0000 + 0.0094i
-1.0000 - 0.0094i
-1.0000 + 0.0031i
-1.0000 - 0.0031i
-0.9982 + 0.0596i
-0.9982 - 0.0596i
-0.9978 + 0.0659i
-0.9978 - 0.0659i
-0.9974 + 0.0722i
-0.9974 - 0.0722i
-0.9980 + 0.0628i
-0.9980 - 0.0628i
-1.0000 + 0.0063i
-1.0000 - 0.0063i
-0.9976 + 0.0690i
-0.9976 - 0.0690i
-0.9969 + 0.0784i
-0.9969 - 0.0784i
-0.9972 + 0.0753i
-0.9972 - 0.0753i
-0.9984 + 0.0565i
-0.9984 - 0.0565i
-0.9999 + 0.0157i
-0.9999 - 0.0157i
-0.9992 + 0.0408i
-0.9992 - 0.0408i
-0.9990 + 0.0439i
-0.9990 - 0.0439i
-0.9993 + 0.0377i
-0.9993 - 0.0377i
-0.9986 + 0.0534i
-0.9986 - 0.0534i
-0.9994 + 0.0345i
-0.9994 - 0.0345i
-0.9989 + 0.0471i
-0.9989 - 0.0471i
-0.9995 + 0.0314i
-0.9995 - 0.0314i
-0.9987 + 0.0502i
-0.9987 - 0.0502i
-0.9996 + 0.0283i
-0.9996 - 0.0283i
-0.9997 + 0.0251i
-0.9997 - 0.0251i
-0.9998 + 0.0188i
-0.9998 - 0.0188i
-0.9998 + 0.0220i
-0.9998 - 0.0220i
0.0746 + 0.9972i
0.0746 - 0.9972i
0.0714 + 0.9974i
0.0714 - 0.9974i
0.0683 + 0.9977i
0.0683 - 0.9977i
0.0652 + 0.9979i
0.0652 - 0.9979i
-0.0854 + 0.9963i
-0.0854 - 0.9963i
-0.0823 + 0.9966i
-0.0823 - 0.9966i
-0.0792 + 0.9969i
-0.0792 - 0.9969i
-0.0760 + 0.9971i
-0.0760 - 0.9971i
-0.0698 + 0.9976i
-0.0698 - 0.9976i
-0.0729 + 0.9973i
-0.0729 - 0.9973i
0.0620 + 0.9981i
0.0620 - 0.9981i
0.0589 + 0.9983i
0.0589 - 0.9983i
-0.0666 + 0.9978i
-0.0666 - 0.9978i
-0.0635 + 0.9980i
-0.0635 - 0.9980i
0.0495 + 0.9988i
0.0495 - 0.9988i
0.0526 + 0.9986i
0.0526 - 0.9986i
0.0464 + 0.9989i
0.0464 - 0.9989i
0.0432 + 0.9991i
0.0432 - 0.9991i
0.0558 + 0.9984i
0.0558 - 0.9984i
0.0401 + 0.9992i
0.0401 - 0.9992i
-0.0604 + 0.9982i
-0.0604 - 0.9982i
-0.0541 + 0.9985i
-0.0541 - 0.9985i
-0.0572 + 0.9984i
-0.0572 - 0.9984i
-0.0510 + 0.9987i
-0.0510 - 0.9987i
-0.0478 + 0.9989i
-0.0478 - 0.9989i
-0.0415 + 0.9991i
-0.0415 - 0.9991i
-0.0447 + 0.9990i
-0.0447 - 0.9990i
0.0369 + 0.9993i
0.0369 - 0.9993i
-0.0384 + 0.9993i
-0.0384 - 0.9993i
0.0338 + 0.9994i
0.0338 - 0.9994i
-0.0353 + 0.9994i
-0.0353 - 0.9994i
-0.0259 + 0.9997i
-0.0259 - 0.9997i
-0.0290 + 0.9996i
-0.0290 - 0.9996i
-0.0227 + 0.9997i
-0.0227 - 0.9997i
-0.0321 + 0.9995i
-0.0321 - 0.9995i
0.0307 + 0.9995i
0.0307 - 0.9995i
0.0212 + 0.9998i
0.0212 - 0.9998i
0.0181 + 0.9998i
0.0181 - 0.9998i
0.0244 + 0.9997i
0.0244 - 0.9997i
0.0150 + 0.9999i
0.0150 - 0.9999i
0.0024 + 1.0000i
0.0024 - 1.0000i
-0.0007 + 1.0000i
-0.0007 - 1.0000i
-0.0196 + 0.9998i
-0.0196 - 0.9998i
0.0275 + 0.9996i
0.0275 - 0.9996i
0.0087 + 1.0000i
0.0087 - 1.0000i
0.0055 + 1.0000i
0.0055 - 1.0000i
-0.0102 + 0.9999i
-0.0102 - 0.9999i
-0.0039 + 1.0000i
-0.0039 - 1.0000i
-0.0070 + 1.0000i
-0.0070 - 1.0000i
-0.0133 + 0.9999i
-0.0133 - 0.9999i
-0.0164 + 0.9999i
-0.0164 - 0.9999i
0.0118 + 0.9999i
0.0118 - 0.9999i
0.8988 + 0.0000i
Except for the first element (1.1126), the absolute values of all the others are uniformly 1.
This time, ‘y’ corresponds to:
syms x
yp = vpa(poly2sym(y,x),5)
yp =
figure
fplot(yp, [-1000, 1000])
grid
axis([-pi pi -5 5])
The vertical dashed lines indicate singularities .
The sin function has an infiinty of roots, those being radians, where n is an integer. It is necessary to use a zero-finding algorithm (such as fzero or fsolve) or interpolation (interp1) to locate them, not the roots function.
.
更多回答(1 个)
darova
2021-7-30
I'd try fsolve for solving
Read help carefully:
fplot(f,[0 10])
1 个评论
raha ahmadi
2021-7-30
编辑:raha ahmadi
2021-7-30
Dear darova
Thank you for your help, I read fsolve but I think it solves a system of nonlinear equations. I used fzero instead but I only got one answer I need solve it in some periods and get more roots
Best regards
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!发生错误
由于页面发生更改,无法完成操作。请重新加载页面以查看其更新后的状态。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)