2D ODE with constant? how to solve
9 次查看(过去 30 天)
显示 更早的评论

0 个评论
采纳的回答
Sulaymon Eshkabilov
2021-8-4
Most parts of your code is ok, but within the loop, you have overlooked sth and thus, you final solutions are not quite accurate. Here is ODE45 simulation which can be compared with your simulation results.
ICs=[0.6;0.6];
a=0.10;
b=10;
t=[0,60];
F = @(t, z)([a-z(1)+z(1).^2*z(2);b-z(1).^2*z(2)]);
OPTs = odeset('reltol', 1e-6, 'abstol', 1e-9);
[time, z]=ode45(F, t, ICs, OPTs);
figure(2)
plot(time,z(:,1),'b',time,z(:,2),'r')
xlabel('time')
ylabel('x(t) y(t)')
legend('x(t)', 'y(t)', 'location', 'best')
title('Schnackenberg eqn simulation'), xlim([0, 5])
figure(1)
plot(z(:,1),z(:,2),'k')
title('Simulation using ODE45'), grid on
xlabel('x(t)')
ylabel('y(t)')
0 个评论
更多回答(1 个)
Sulaymon Eshkabilov
2021-8-4
Use odex (ode23, ode45, ode113, etc.) solvers. See this doc how to employ them in your exercise: https://www.mathworks.com/help/matlab/ref/ode45.html?searchHighlight=ode45&s_tid=srchtitle
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

