Applying Cramer's rule on an nxn matrix
23 次查看(过去 30 天)
显示 更早的评论
I need to find the solution to a system Ax=b using Cramer's rule. It needs to be Cramer's rule. I have made the following code that works for a 3x3 matrix, but i want it to work for an nxn matrix using a for-loop.
I can't figure out how to write the loop.
Thank you very much in advance!
n=3; d=10;
A = floor(d*rand(n,n)); b = randi(d,n,1);
D_A = det(A);
A_1 = A;
A_1(1) = b(1);
A_1(2) = b(2);
A_1(3) = b(3);
D_A_1 = det(A_1);
x1 = D_A_1/D_A;
A_2 = A;
A_2(4) = b(1);
A_2(5) = b(2);
A_2(6) = b(3);
D_A_2 = det(A_2);
x2 = D_A_2/D_A;
A_3 = A;
A_3(7) = b(1);
A_3(8) = b(2);
A_3(9) = b(3);
D_A_3 = det(A_3);
x3 = D_A_3/D_A;
0 个评论
回答(2 个)
Roger Stafford
2013-10-10
编辑:Roger Stafford
2013-10-10
The two basic operations in applying Cramer's rule are: 1) replacing the k-th column of A by b and 2) obtaining the determinant of the various matrices which this produces, as well as the determinant of A. Hopefully you are allowed to use the matlab function 'det' for the latter purpose. The former one is accomplished in two steps by
A_k = A;
A_k(:,k) = b;
Of course you need to use a for-loop in order to do this for each k.
0 个评论
Ali Jadoon
2014-3-24
Try this m file. It is general code for any size matrix to generate the output File ID: #45930
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!