fsolve

10 次查看(过去 30 天)
Liber-T
Liber-T 2011-6-17
Is there a way to accelerate the fsolve function, with the least lost of precision possible. In:
beta(n+1)=fsolve(F,beta(n))
  6 个评论
Liber-T
Liber-T 2011-6-20
F=@(x)10000000000000*det([0 besselj(0,(sqrt(Ko^2*Ed-(x)^2))*b) (i*bessely(0,sqrt((Ko^2*Ed-(x)^2))*b)+besselj(0,sqrt((Ko^2*Ed-(x)^2))*b)) -(i*bessely(0,sqrt((Ko^2-(x)^2))*b)+besselj(0,sqrt((Ko^2-(x)^2))*b));y(length(t),1) -besselj(0,(sqrt(Ko^2*Ed-(x)^2))*a) -(i*bessely(0,sqrt((Ko^2*Ed-(x)^2))*a)+besselj(0,sqrt((Ko^2*Ed-(x)^2))*a)) 0;0 -Ed*besselj(1,(sqrt(Ko^2*Ed-(x)^2))*b)/((sqrt(Ko^2*Ed-(x)^2))) -Ed*(i*bessely(1,sqrt((Ko^2*Ed-(x)^2))*b)+besselj(1,sqrt((Ko^2*Ed-(x)^2))*b))/((sqrt(Ko^2*Ed-(x)^2))) (i*bessely(1,sqrt((Ko^2-(x)^2))*b)+besselj(1,sqrt((Ko^2-(x)^2))*b))/((sqrt(Ko^2-(x)^2)));-(1-((e^2*ne0*besselj(0,mu1)/(me*Eo))/(omega*(omega-i*v))))*-y(length(t),2)/(((Ko^2*(1-((e^2*ne0*besselj(0,mu1)/(me*Eo))/(omega*(omega-i*v))))-(x)^2))) Ed*besselj(1,(sqrt(Ko^2*Ed-(x)^2))*a)/((sqrt(Ko^2*Ed-(x)^2))) Ed*(i*bessely(1,sqrt((Ko^2*Ed-(x)^2))*a)+besselj(1,sqrt((Ko^2*Ed-(x)^2))*a))/((sqrt(Ko^2*Ed-(x)^2))) 0]);
Liber-T
Liber-T 2011-6-20
s=0.1
t=0.001
f=200000000
%a=0.013;
%b=0.015;
%Ed=4.52;
omega=f*2*pi;
%v/omega=t
v=t*omega;
omegap=omega/s;
Eo=8.85418782*10^-12;
muo=1.25663706*10^-6;
Ko=sqrt((omega^2)*Eo*muo);
Ep=1-((omegap^2)/(omega*(omega-i*v)));
The answer here is 8.4049+0.0038*i

请先登录,再进行评论。

采纳的回答

Sean de Wolski
Sean de Wolski 2011-6-17
preallocate beta
beta = zeros(nmax+1,1);
beta(1) = beta_of_1;
for ii = 1:nmax
beta(ii+1) = fsolve(F,beta(ii));
end
EDIT more stuff:
You calculate:
  • 'sqrt((Ko^2-(x)^2))*b': 4x
  • 'sqrt((Ko^2*Ed-(x)^2))*a': 4x
  • the bessel functions multiple times a pop.
Turn your function handle into a function. Make each of these calculations once, then use them multiple times.
  1 个评论
Liber-T
Liber-T 2011-6-17
Thnks, but I already know that trick, is there something else for fsolve?

请先登录,再进行评论。

更多回答(1 个)

Walter Roberson
Walter Roberson 2011-6-17
fsolve() can be much faster if you can constrain the range to search in.
  2 个评论
Liber-T
Liber-T 2011-6-17
how do I constrain the range
Walter Roberson
Walter Roberson 2011-6-20
Sorry it turns out that fsolve() has no way of constraining ranges. fzero() can operate over an interval, if your function has only one independent variable.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by