A polynomial of the form:
, for
, is said to be natural factorable if it can be factored into products of first degree binomials:
, where,
and
are all natural numbers (i.e. integers that are
).
Given an integer a, write a function that counts the number of all possible natural factorable polynomials that can be formed, wherein
.
For example, when
, the are 7 possible natural factorable polynomials, namely:
Therefore the function output should be 7.
Solution Stats
Problem Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers8
Suggested Problems
-
Sum of first n terms of a harmonic progression
497 Solvers
-
Implement a bubble sort technique and output the number of swaps required
381 Solvers
-
2243 Solvers
-
Pandigital Multiples of 11 (based on Project Euler 491)
53 Solvers
-
88 Solvers
More from this Author116
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!