Consider the following number system. Calculate the prime factorization for each number n, then represent the prime factors in a vector like so:
13 11 7 5 3 2
---------------
2: 1
3: 1 0
4: 2
5: 1 0 0
6: 1 1
12: 1 2
14: 1 0 0 1
18: 2 1
26: 1 0 0 0 0 1
60: 1 1 2
Each "place" in the number system represents a prime number. Given n, return the vector p.
As shown above, if n = 26, then p = [1 0 0 0 0 1].
The input n is always an integer greater than 1. Suppress any leading zeros. The length of the vector is determined by the largest prime factor.
Solution Stats
Problem Comments
5 Comments
Solution Comments
Show comments
Loading...
Problem Recent Solvers2537
Suggested Problems
-
4309 Solvers
-
13210 Solvers
-
627 Solvers
-
Permute diagonal and antidiagonal
500 Solvers
-
602 Solvers
More from this Author96
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
I think the explanation in the problem statement is a bit sparse. The numbers in the table do not represent prime numbers per se: they represent indices on prime numbers, whose ultimate product yields the value n.
See http://mathworld.wolfram.com/PrimeFactorization.html
The in-built function factors() was pretty helpful for this problem :)
I'm sure Test 4 & 6 are incorrect!
@Peter, what makes you think so?
@Dyuman Joshi,
I was wrong! My thinking was wrong!