搜索
Every day, thousands of people ask questions on MATLAB Answers and many of these are about their code. Questions such as “How can I make this faster?”, “Why do I get this error message?” or “Why don’t I get the answer I expect?”. There’s often one crucial thing missing though – the code in question!
Most of the people who answer questions on MATLAB Answers are volunteers from the community. They are answering your questions for fun, to learn more about MATLAB or just because they like to be helpful. This is even true for people such as me who are MathWorks members of staff. It’s not part of my role to patrol the community, looking where I can help out. I do it because I like to do it.
Make it easier to help me help you.
Imagine you’re a volunteer, looking for something interesting to answer. What kind of questions are you more likely to dig into and help an anonymous stranger figure out?
In my case, I almost always focus on problems that I can easily reproduce. I rarely know the answer to any question off the top of my head and so what I like to do is start off with the problem you are facing and use the various tools available to me such as the profiler or debugger to figure it out. This is the fun of it all for me – I almost always learn something by doing this and you get helped out as a side effect!
The easier I can reproduce your issue, the more likely I am to get started. If I can’t reproduce anything and the answer isn’t immediately obvious to me I’ll just move onto the next question. One example that demonstrates this perfectly is a case where someone’s MATLAB code was running too slowly. All of the code was available so I could run it on my machine, profile it and provide a speed-up of almost 150x.
It's not always feasible or desirable to post all of your code in which case you need to come up with a minimal, reproducible example. What’s the smallest amount of code and data you can post that I can run on my machine and see what you see? This may be more work for you but it will greatly increase your chances of receiving an answer to your question.
Hi,
I am new to Matlab and looking to model complete EPS system starting with battery modelling. I have seen videos where the modelling is explained but looking for a one which can teach me from the scratch.
Hi, currently I'm studying about DC-DC Boost converter with controller. After I applied the step time, the output voltage supposed to follow the step time, but there is some delay in the simulation results after I applied the "step time" in the step input block. Can someone help, why this delay occur? Please see the attached pictures. Thanks
As per data sheet for VIPER22A, the product is obsolete.
For UC3843A you will have to refer to the data sheet, link given below: https://www.ti.com/lit/ds/symlink/uc3843a.pdf?ts=1637624394197&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FUC3843A
For UC3843A, the reference output voltage is 5 V and the normal output voltage is 13.5 V.
After repairing the power supply of a big water buffalo PC150NCA, now all the parts found to be broken are replaced, but the power-on output 12V is only 4.2V. The original power supply block is UC3843B, which is not sold locally. I can only buy a UC3843A replacement . I don’t know if the low output voltage has anything to do with this (the optocoupler and the 431 voltage regulator block have also been replaced)
Attention all Controls Professors, Teaching Assistants, and Students!
The Virtual Hardware and Labs for Controls by Brian Hong is an absolute must-have from the MATLAB Central File Exchange. With the help of Simscape for physical modelling and simulation of mechatronic systems,
- students can use the interactive experiments to teach themselves some of the concepts of control theory in a learn by doing approach.
- professors and TA’s can use this to replace or augment actual lab work.
With tightening budgets and/or in person class restrictions this can help you transfer these vital skills to the students in a fun manner. Here is an overview of the available modules:
https://www.mathworks.com/matlabcentral/fileexchange/100064-virtual-hardware-and-labs-for-controls
If you have any questions feel free to leave a comment below and I’ll get back to you.
Virtual Hardware and Labs for Controls
Virtual labs and mechanisms for studying controls.
Hi DLC, in case you haven't seen it already, Dr. Dennis Dahlquist and Dr. Zekeriya Aliyazicioglu recently developed a collection of Virtual Labs in Electric Circuits . Please feel free to explore and share your thoughts!
With the switching power supply made by VIPER22A scheme , the 5V output always has noise, and the ripple exceeds 200MV after loading. How to change it? 1. 220VAC input, two outputs, 24V and 5V output are noisy, the ripple after 5V load is more than 200MV, 5V is connected with an LDO to 3.3V, and the measured 3.3V is also noisy, and the LDO heats up seriously. Change The LDO remains unchanged. 2. It is suspected that the load current is large, but I changed a circuit board with the same scheme and found that there is no noise. Although there are ripples, it is not very hot. 3. In addition, directly use a 5V adapter to convert to 3.3V through the same LDO. problem. How to change the device in this figure? 4. For hardware novices, the transformer will not be changed temporarily, and I hope to improve it by adjusting other devices.
VOTE on your favorite MATLAB images before Oct. 31 and win special edition T-shirts!
In just 2 weeks, 11,000 votes have been cast on 1200+ entries ! In the final week (Oct 25~Oct 31, 2021), we will add some fun and give out a T-shirt to lucky voters who cast:
- The 12000th vote
- The 12500th vote
- The 13000th vote
- The 13500th vote
- The 14000th vote
- The 14500th vote
- The 15000th vote
- The 15500th vote
- The 16000th vote
Furthermore, for every vote an entry gets, MathWorks will donate $1 to Direct Relief (Maximum amount of $20 donated per entry; maximum of $20,000 in total).
Look at the entries , and if they make you smile, VOTE!