The Vehicle Speed Analysis System is designed to automatically analyze the speed of vehicles in video footage. The project includes two main modules:
- Module 1 - Object Tracking:This module uses Siamese Fully Convolutional Networks (SiamFC) to track a target vehicle across frames. The system is enhanced with a Kalman filter to improve tracking accuracy under varying conditions such as occlusions, low resolution, and shape changes. The implementation uses MATLAB's Deep Learning Toolbox to integrate pre-trained models for efficient tracking.
- Module 2 - Instance Segmentation:This module focuses on precise segmentation of vehicle parts using DeepLabV3+ for semantic segmentation and Mask R-CNN for instance segmentation. The methodology is tailored to overcome challenges like scale variations and low resolution. A custom dataset, annotated for segmentation tasks, is used for model training and validation.
Key project highlights include:
- Deployment of deep learning models with MATLAB for tracking and segmentation.
- Comparative analysis of DeepLabV3+ and Mask R-CNN performance.
- Pretrained models for Module 2 can be downloaded from the following links:
This system demonstrates the potential of MATLAB's deep learning frameworks to solve complex computer vision tasks effectively.
引用格式
Choi Youngsoo (2025). Deep Learning for Vehicle Tracking and Wheel Detection (https://www.mathworks.com/matlabcentral/fileexchange/176278-deep-learning-for-vehicle-tracking-and-wheel-detection), MATLAB Central File Exchange. 检索时间: .
https://www.matlabexpo.com/kr/2023/proceedings.html
MATLAB 版本兼容性
创建方式
R2024b
兼容 R2022a 到 R2024b 的版本
平台兼容性
Windows macOS Linux标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!