The Kalman filter is actually a feedback approach to minimize the estimation error in terms of sum of square. This approach can be applied to general nonlinear optimization. This function shows a way using the extended Kalman filter to solve some unconstrained nonlinear optimization problems. Two examples are included: a general optimization problem and a problem to solve a set of nonlinear equations represented by a neural network model.
This function needs the extended Kalman filter function, which can be download from the following link:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18189&objectType=FILE
引用格式
Yi Cao (2026). Unconstrained Optimization using the Extended Kalman Filter (https://ww2.mathworks.cn/matlabcentral/fileexchange/18286-unconstrained-optimization-using-the-extended-kalman-filter), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
- Signal Processing > Signal Processing Toolbox > Digital and Analog Filters > Digital Filter Design > Adaptive Filters >
标签
致谢
参考作品: Learning the Extended Kalman Filter
启发作品: Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter
| 版本 | 已发布 | 发行说明 | |
|---|---|---|---|
| 1.0.0.0 | update description |
