CA QUASI-PARTICLES WITH SPIN

"particle" states immersed in a chaotic sea of "vacuum" states
433.0 次下载
更新时间 2010/3/19

查看许可证

This is a highly experimental code that serves to explore the possible deterministic/algorithmic origin of vacuum fluctuations and ZPE.
The core idea is based on an initially reversible cellular automaton which is documented in the reference given in the first Help lines of the code. The present development is based on the use of bit triplets which may have quiescent v-states and excited p-states. "Excitation" corresponds to an increase of the alphabet base, eg (1,0,1) -> (1,0,2). The other peculiarity of this code is that the lattice constantly rotates, thus it corresponds to an 1-D "Goedel" digital universe with a hidden angular momentum of 1 unit.
Due to rotation, there is a mixing of bits between states that cause non-admissible transitions to occur eg (1,0,2) ->(0,2,*). The new state than has to move to the left or to the right and this is done with the aid of an additional move-collision instruction set. Additionally all triplets undergo reversible transformations represented as permutations of the integers in the interval [0, 2^3-1]. The combination of permutations rules and bit mixing causes the appearance of stochasticity without any explicit use of the RAND function.

引用格式

Theophanes Raptis (2024). CA QUASI-PARTICLES WITH SPIN (https://www.mathworks.com/matlabcentral/fileexchange/27018-ca-quasi-particles-with-spin), MATLAB Central File Exchange. 检索来源 .

MATLAB 版本兼容性
创建方式 R2007b
兼容任何版本
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Modeling 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.0.0.0