Includes two functions: Fseries.m and Fseriesval.m
[a,b] = Fseries(X,Y,n) fits an nth-order Fourier expansion of the form
y = a_0/2 + Sum_k[ a_k cos(kx) + b_k sin(kx) ]
to the data in the vectors X & Y, using a least-squares fit.
Y = Fseriesval(a,b,X) evaluates the Fourier series defined by the coefficients a and b at the values in the vector X.
Extra arguments allow for rescaling of X data and sin-only or cosine-only expansions.
Example:
% Generate data
x = linspace(0,2,41)';
y = mod(2*x,1);
% Use FSERIES to fit
[a,b,yfit] = Fseries(x,y,10);
% Evaluate on finer grid
xfine = linspace(0,2)';
yfine = Fseriesval(a,b,xfine);
% Visualize results
plot(x,y,'x',x,yfit,'o',xfine,yfine)
This generates the attached image of a 10-term Fourier series approximation of a sawtooth wave.
引用格式
Matt Tearle (2024). Simple real Fourier series approximation (https://www.mathworks.com/matlabcentral/fileexchange/31013-simple-real-fourier-series-approximation), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
- AI and Statistics > Statistics and Machine Learning Toolbox > Industrial Statistics >
- Sciences > Mathematics > Analysis > Fourier Series >
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!