gaussfitn

版本 1.1.2 (3.1 KB) 作者: Matt J
Fit N-dimensional scattered points with Gaussian+constant
601.0 次下载
更新时间 2022/8/11

查看许可证

This function uses lsqcurvefit to fit parameters D, A, mu, sig to the R^N-->R
Gaussian+constant model function,
z(x) = D + A*exp( -0.5 * (x-mu).' * inv(sig) *(x-mu) )
Here A and D are unknown scalars, mu is an unknown Nx1 mean vector, and sig is an
unknown NxN covariance matrix. By imposing lower and upper bounds 0<=D<=0 (see below), this can also be used to perform pure Gaussian fitting.
SYNTAX:
[params,resnorm, residual,exitflag,output] = gaussfitn(xdata,zdata,params0,LB,UB,Name,Value)
INPUTS (required):
xdata: MxN matrix whose rows specify M scattered samples in R^N
zdata: Mx1 vector of corresponding samples z(xdata)
INPUTS (optional)
params0: Cell array of initial parameter estimates {D0,A0,mu0,sig0}.
Can also be empty [] in which case default initial guesses
are autogenerated. Can also consist of cell array of empty
and non-empty elements like {D0,[],mu0,[]} in which case
default initial guesses are generated for select parameters.
LB: Cell array of lower bounds {D_LB, A_LB, mu_LB} on D, A, and mu.
UB: Cell array of upper bounds {D_UB, A_UB, mu_UB} on D, A, and mu.
Name,Value: Name/Value option pairs compatible with lsqcurvefit. See,
<https://www.mathworks.com/help/optim/ug/lsqcurvefit.html#buuhcjo-options>.
By default, however, SpecifyConstraintGradient=true unless
over-ridden.
OUTPUTS:
params: Final estimate of the parameters as a cell array {D,A,mu,sig}
resnorm: As in lsqcurvefit
residual: As in lsqcurvefit
exitflag: As in lsqcurvefit
output: As in lsqcurvefit

引用格式

Matt J (2024). gaussfitn (https://www.mathworks.com/matlabcentral/fileexchange/69116-gaussfitn), MATLAB Central File Exchange. 检索时间: .

MATLAB 版本兼容性
创建方式 R2018a
与 R2016b 及更高版本兼容
平台兼容性
Windows macOS Linux
类别
Help CenterMATLAB Answers 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
版本 已发布 发行说明
1.1.2

Typo correction

1.1.1

Small fix to the improved mu0/sig0 estimation method

1.1.0

Improved initial guesses of mu0 and sig0.

1.0.2

No change

1.0.1

Description modification

1.0.0