Clustering Toolbox
无许可证
The purpose of the development of this toolbox was to compile a continuously extensible, standard tool, which is useful for any MATLAB user for one's aim. In Chapter 1 of the downloadable related documentation one can find a theoretical introduction containing the theory of the algorithms, the definition of the validity measures and the tools of visualization, which help to understand the programmed MATLAB files.
Chapter 2 deals with the exposition of the
files and the description of the particular algorithms, and they are illustrated with simple examples, while in Chapter 3 the whole
Toolbox is tested on real data sets during the solution of three clustering problems: comparison and selection of algorithms; estimating the optimal number of clusters; and examining
multidimensional data sets.
About the Toolbox
The Fuzzy Clustering and Data Analysis Toolbox is a collection of MATLAB functions. The toolbox provides five categories of functions:
- Clustering algorithms. These functions group the given data set into clusters by different approaches: functions Kmeans and Kmedoid
are hard partitioning methods, FCMclust, GKclust, GGclust are fuzzy partitioning methods with different distance norms.
- Evaluation with cluster prototypes. On the score of the clustering results of a data set there is a possibility to calculate membership for "unseen" data sets with these set of functions. In 2-dimensional case the functions draw a contour-map in the data space to visualize
the results.
- Validation. The validity function provides cluster validity measures for each partition. It is useful when the number of cluster is unknown a priori. The optimal partition can be determined by the point of the extrema of the validation indexes in dependence of the number of clusters. The indexes calculated are: Partition Coefficient (PC), Classification Entropy (CE), Partition Index (SC), Separation Index (S), Xie and Beni's Index (XB), Dunn's Index (DI) and Alternative Dunn Index (DII).
- Visualization. The Visualization part of this toolbox provides the modified Sammon mapping of the data. This mapping method is a
multidimensional scaling method described by Sammon.
- Examples. An example based on industrial data set to present the usefulness of these toolbox and algorithms.
引用格式
Janos Abonyi (2024). Clustering Toolbox (https://www.mathworks.com/matlabcentral/fileexchange/7486-clustering-toolbox), MATLAB Central File Exchange. 检索时间: .
MATLAB 版本兼容性
平台兼容性
Windows macOS Linux类别
标签
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Demos/PCAexample/
Demos/clusteringexamples/motorcycle/
Demos/clusteringexamples/synthetic/
Demos/clustevalexample/
Demos/comparing/
Demos/normexample/
Demos/optnumber/
Demos/projection/
FUZZCLUST/
版本 | 已发布 | 发行说明 | |
---|---|---|---|
1.0.0.0 |