Cleaning and Preparing Time Series Data
Time series data are everywhere. Whether it is from sensors on automated vehicles and manufacturing equipment, meteorological data, or financial data from the equities market, it helps us understand the behavior of a system over time. However, real-world time series data can have many issues like missing data, outliers, noise, etc. The data needs to be cleaned and prepped first before it can be analyzed or used for model development. Unfortunately, it is not always clear how to clean this data. Which algorithm should be used for filling missing values? Should outliers be removed first or noise? How is data that is measured using different sample rates synchronized? The process is iterative and can be very time consuming. In this session, we will show you how to use timetables with the new Data Cleaner app and Live Editor tasks to identify and fix common issues in time series data. We will cover different data cleaning methods using both code and low-code techniques that can make the data prep process more efficient.
Published: 31 May 2022
Featured Product
MATLAB
Up Next:
Related Videos:
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)