dlyap
求解离散时间李雅普诺夫方程
语法
X = dlyap(A,Q)
X = dlyap(A,B,C)
X = dlyap(A,Q,[],E)
说明
X = dlyap(A,Q)
求解离散时间李雅普诺夫方程 AXAT − X + Q = 0,
其中 A 和 Q 是 n×n 矩阵。
当 Q 对称时,解 X 为对称解;当 Q 为正定且 A 的所有特征值都在单位圆内时,解 X 为正定解。
X = dlyap(A,B,C)
求解西尔维斯特方程 AXB – X + C = 0,
其中 A、B 和 C 必须具有兼容的维度,但不必是方阵。
X = dlyap(A,Q,[],E)
求解广义离散时间李雅普诺夫方程 AXAT – EXET + Q = 0,
其中 Q 是对称矩阵。空方括号 []
是必需的。如果您在其中放置任何值,函数将会出错。
诊断
如果 A 的特征值 α1、α2…αN 对所有 (i, j) 都满足 αiαj ≠ 1,则离散时间李雅普诺夫方程有(唯一)解。
如果违反此条件,dlyap
会生成错误消息
Solution does not exist or is not unique.
算法
dlyap
对李雅普诺夫方程使用 SLICOT 例程 SB03MD 和 SG03AD,对西尔维斯特方程使用 SB04QD (SLICOT)。
参考
[1] Barraud, A.Y., “A numerical algorithm to solve A XA - X = Q,” IEEE® Trans. Auto. Contr., AC-22, pp. 883-885, 1977.
[2] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB = C," Comm. of the ACM, Vol. 15, No. 9, 1972.
[3] Hammarling, S.J., “Numerical solution of the stable, non-negative definite Lyapunov equation,” IMA J. Num. Anal., Vol. 2, pp. 303-325, 1982.
[4] Higham, N.J., ”FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation,” A.C.M. Trans. Math. Soft., Vol. 14, No. 4, pp. 381-396, 1988.
[5] Penzl, T., ”Numerical solution of generalized Lyapunov equations,” Advances in Comp. Math., Vol. 8, pp. 33-48, 1998.
[6] Golub, G.H., Nash, S. and Van Loan, C.F. “A Hessenberg-Schur method for the problem AX + XB = C,” IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
[7] Sima, V. C, “Algorithms for Linear-quadratic Optimization,” Marcel Dekker, Inc., New York, 1996.
版本历史记录
在 R2006a 之前推出