Profile Network to Determine Performance Bottlenecks
This example shows how to identify performance bottlenecks in a deep learning network on an FPGA by using the Profile
option of the predict
method.
Prerequisites
Xilinx® ZCU102 SoC development kit.
Deep Learning HDL Toolbox™ Support Package for Xilinx® FPGA and SoC
Deep Learning Toolbox™
Deep Learning HDL Toolbox™
Load the Pretrained SeriesNetwork
Load the pretrained digits network:
snet = getDigitsNetwork; snet.Layers
ans = 15×1 Layer array with layers: 1 'imageinput' Image Input 28×28×1 images with 'zerocenter' normalization 2 'conv_1' Convolution 8 3×3×1 convolutions with stride [1 1] and padding 'same' 3 'batchnorm_1' Batch Normalization Batch normalization with 8 channels 4 'relu_1' ReLU ReLU 5 'maxpool_1' Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] 6 'conv_2' Convolution 16 3×3×8 convolutions with stride [1 1] and padding 'same' 7 'batchnorm_2' Batch Normalization Batch normalization with 16 channels 8 'relu_2' ReLU ReLU 9 'maxpool_2' Max Pooling 2×2 max pooling with stride [2 2] and padding [0 0 0 0] 10 'conv_3' Convolution 32 3×3×16 convolutions with stride [1 1] and padding 'same' 11 'batchnorm_3' Batch Normalization Batch normalization with 32 channels 12 'relu_3' ReLU ReLU 13 'fc' Fully Connected 10 fully connected layer 14 'softmax' Softmax softmax 15 'classoutput' Classification Output crossentropyex with '0' and 9 other classes
Define FPGA Board Interface
Define the target FPGA board programming interface by using the dlhdl.Target
object. Specify that the interface is for a Xilinx board with an Ethernet interface. To create the target object, enter:
hTarget = dlhdl.Target('Xilinx',Interface="Ethernet");
To use the JTAG interface, install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado tool path and use the JTAG interface, enter:
hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat'); hTarget = dlhdl.Target('Xilinx',Interface='JTAG');
Prepare Network for Deployment
Prepare the network for deployment by creating a dlhdl.Workflow
object. Specify the network and bitstream name. Ensure that the bitstream name matches the data type and FPGA board. In this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single data type.
hW = dlhdl.Workflow(Network=snet,Bitstream="zcu102_single",Target=hTarget);
To run the example in a Xilinx ZC706 board, enter:
hW = dlhdl.Workflow(Network=snet,Bitstream='zc706_single',Target=hTarget);
Compile Network
Run the compile
method of the dlhdl.Workflow
object to compile the network and generate the instructions, weights, and biases for deployment.
dn = compile(hW);
### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' offset_name offset_address allocated_space _______________________ ______________ ________________ "InputDataOffset" "0x00000000" "4.0 MB" "OutputResultOffset" "0x00400000" "4.0 MB" "SystemBufferOffset" "0x00800000" "28.0 MB" "InstructionDataOffset" "0x02400000" "4.0 MB" "ConvWeightDataOffset" "0x02800000" "4.0 MB" "FCWeightDataOffset" "0x02c00000" "4.0 MB" "EndOffset" "0x03000000" "Total: 48.0 MB"
Program Bitstream onto FPGA and Download Network Weights
To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy
method of the dlhdl.Workflow
object. This function uses the output of the compile
function to program the FPGA board and download the network weights and biases. The deploy
function starts programming the FPGA device and displays progress messages, and the required time to deploy the network.
deploy(hW);
### Programming FPGA Bitstream using Ethernet... Downloading target FPGA device configuration over Ethernet to SD card ... # Copied /tmp/hdlcoder_rd to /mnt/hdlcoder_rd # Copying Bitstream hdlcoder_system.bit to /mnt/hdlcoder_rd # Set Bitstream to hdlcoder_rd/hdlcoder_system.bit # Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd # Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb # Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM' Downloading target FPGA device configuration over Ethernet to SD card done. The system will now reboot for persistent changes to take effect. System is rebooting . . . . . . ### Programming the FPGA bitstream has been completed successfully. ### Loading weights to FC Processor. ### FC Weights loaded. Current time is 28-Jun-2020 12:24:21
Test Network
Load the example image.
inputImg = imread('five_28x28.pgm');
Classify the image on the FPGA by using the predict
method of the dlhdl.Workflow
object and display the results.
[~,speed] = predict(hW,single(inputImg),'Profile','on');
### Finished writing input activations. ### Running single input activations. Deep Learning Processor Profiler Performance Results LastLayerLatency(cycles) LastLayerLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 73231 0.00033 1 73273 3002.5 conv_module 26847 0.00012 conv_1 6618 0.00003 maxpool_1 4823 0.00002 conv_2 4876 0.00002 maxpool_2 3551 0.00002 conv_3 7039 0.00003 fc_module 46384 0.00021 fc 46384 0.00021 * The clock frequency of the DL processor is: 220MHz
Identify and Display the Bottleneck Layer
Remove the module- and network-level results contained in the NumFrames
, Total latency
, and Frames/s
columns from the results table. Retain only the network layer profiler results. After you identify the bottleneck layer, display the bottleneck layer index, running time, and information.
speed('Network',:) = []; speed('____conv_module',:) = []; speed('____fc_module',:) = []; speed = removevars(speed, {'NumFrames','Total Latency(cycles)','Frame/s'});
Sort the performance results in descending order.
speed = sortrows(speed,'Latency(cycles)','descend');
The last layer in this sorted table is the bottleneck layer. In this network the bottleneck layer is the fc
layer.
layerSpeed = speed(1,:); layerName = strip(layerSpeed.Properties.RowNames{1},'_'); for idx = 1:length(snet.Layers) currLayer = snet.Layers(idx); if strcmp(currLayer.Name, layerName) bottleNeckLayer = currLayer; break; end end
Display this information for the bottleneck layer:
Layer index
Percentage of time the layer runs
Layer information
dnnfpga.disp(['Bottleneck layer index is ', num2str(idx), '.']);
### Bottleneck layer index is 13.
percent = layerSpeed.("Latency(cycles)")/sum(speed.("Latency(cycles)")) * 100; dispStr = sprintf('It accounts for about %0.2f percent of the total running time.', percent); dnnfpga.disp(dispStr);
### It accounts for about 63.29 percent of the total running time.
dnnfpga.disp('Bottleneck layer information: ');
### Bottleneck layer information:
disp(currLayer);
FullyConnectedLayer with properties: Name: 'fc' Hyperparameters InputSize: 1568 OutputSize: 10 Learnable Parameters Weights: [10×1568 single] Bias: [10×1 single] Show all properties
See Also
dlhdl.Workflow
| dlhdl.Target
| compile
| deploy
| predict