dlhdl.Workflow Class
Namespace: dlhdl
Description
Use the dlhdl.Workflow
object to set options for compiling and deploying
your deep learning network to a target FPGA. You create an object of the
dlhdl.Workflow
class for the specified deep learning network and FPGA
bitstream. Use the object to:
Compile the deep learning network.
Estimate the speed and throughput of your network on the specified FPGA device.
Compile and deploy the neural network onto the FPGA.
Predict the class of input images.
Profile the results for the specified network and the FPGA.
Creation
hW = dlhdl.Workflow('Network',
creates a workflow configuration object with a network object, bitstream, and target object to
deploy your custom pretrained deep learning network object.Network
,'Bitstream',Bitstream
)
hW = dlhdl.Workflow('Network',
creates a workflow configuration object with a network object and bitstream to deploy your
custom pretrained deep learning network object, with additional options specified by one or
more name-value pair arguments.Network
,'Bitstream',Bitstream
,Name,Value
)
Input Arguments
Properties
Methods
Examples
Create Workflow Object by using Property Name Value Pairs
[net,classNames] = imagePretrainedNetwork("vgg19"); hW = dlhdl.Workflow(Network=net,Bitstream="arria10soc_single",Target=hTarget);
Create Workflow Object with Quantized Network Object
[net,classNames] = imagePretrainedNetwork("resnet18"); dlQuantObj = dlquantizer(net,'ExecutionEnvironment','fpga'); inputSize = net.Layers(1).InputSize; img = rand(inputSize); dlQuantObj.calibrate(img) qNet = dlquantObj.quantize; hTarget = dlhdl.Target('Xilinx',Interface="Ethernet"); hW = dlhdl.Workflow(Network=qNet,Bitstream="zcu102_int8",Target=hTarget);
Version History
Introduced in R2020b