Main Content

AcceleratedFunction

Accelerated deep learning function

Since R2021a

    Description

    An AcceleratedFunction stores traces of the underlying function

    Reusing a cached trace depends on the function inputs and outputs:

    • For any dlarray object or structure of dlarray object inputs, the trace depends on the size, format, and underlying datatype of the dlarray. That is, the accelerated function triggers a new trace for dlarray inputs with size, format, or underlying datatype not contained in the cache. Any dlarray inputs differing only by value to a previously cached trace do not trigger a new trace.

    • For any dlnetwork inputs, the trace depends on the size, format, and underlying datatype of the dlnetwork state and learnable parameters. That is, the accelerated function triggers a new trace for dlnetwork inputs with learnable parameters or state with size, format, and underlying datatype not contained in the cache. Any dlnetwork inputs differing only by the value of the state and learnable parameters to a previously cached trace do not trigger a new trace.

    • For other types of input, the trace depends on the values of the input. That is, the accelerated function triggers a new trace for other types of input with value not contained in the cache. Any other inputs that have the same value as a previously cached trace do not trigger a new trace.

    • The trace depends on the number of function outputs. That is, the accelerated function triggers a new trace for function calls with previously unseen numbers of output arguments. Any function calls with the same number of output arguments as a previously cached trace do not trigger a new trace.

    When necessary, the software caches any new traces by evaluating the underlying function and caching the resulting trace in the AcceleratedFunction object.

    The returned AcceleratedFunction object caches the traces of calls to the underlying function and reuses the cached result when the same input pattern reoccurs.

    Try using dlaccelerate for function calls that:

    • are long-running

    • have dlarray objects, structures of dlarray objects, or dlnetwork objects as inputs

    • do not have side effects like writing to files or displaying output

    Invoke the accelerated function as you would invoke the underlying function. Note that the accelerated function is not a function handle.

    Note

    When using the dlfeval function, the software automatically accelerates the forward and predict functions for dlnetwork input. If you accelerate a deep learning function where the majority of the computation takes place in calls to the forward or predict functions for dlnetwork input, then you might not see an improvement in training time.

    Caution

    An AcceleratedFunction object is not aware of updates to the underlying function. If you modify the function associated with the accelerated function, then clear the cache using the clearCache object function or alternatively use the command clear functions.

    Creation

    To create an AcceleratedFunction object, use the dlaccelerate function.

    Properties

    expand all

    This property is read-only.

    Underlying function, specified as a function handle.

    Data Types: function_handle

    Flag to enable tracing, specified as true or false.

    Data Types: logical

    Size of cache, specified as a positive integer.

    The cache size corresponds to the maximum number of input and output combinations to cache.

    Data Types: double

    This property is read-only.

    Cache hit rate, specified as a scalar in the range [0,100].

    The cache hit rate corresponds to the percentage of reused evaluations.

    Data Types: double

    This property is read-only.

    Cache occupancy, specified as a scalar in the range [0,100].

    The cache occupancy corresponds to the percentage of the cache in use.

    Data Types: double

    Check mode, specified as one of the following:

    • 'none' – Do not check accelerated results.

    • 'tolerance' – Check that the accelerated results and the results of the underlying function are within the tolerance given by the CheckTolerance property. If the values are not within this tolerance, then the function throws a warning.

    Check tolerance, specified as a positive scalar.

    If the CheckMode property is 'tolerance', then the function checks that the accelerated results and the results of the underlying function are within the tolerance given by the CheckTolerance property. If the values are not within this tolerance, then the function throws a warning.

    Data Types: double

    Object Functions

    clearCacheClear accelerated deep learning function trace cache

    Examples

    collapse all

    Load the dlnetwork object and class names from the MAT file dlnetDigits.mat.

    s = load("dlnetDigits.mat");
    net = s.net;
    classNames = s.classNames;

    Accelerate the model loss function modelLoss listed at the end of the example.

    fun = @modelLoss;
    accfun = dlaccelerate(fun);

    Clear any previously cached traces of the accelerated function using the clearCache function.

    clearCache(accfun)

    View the properties of the accelerated function. Because the cache is empty, the Occupancy property is 0.

    accfun
    accfun = 
      AcceleratedFunction with properties:
    
              Function: @modelLoss
               Enabled: 1
             CacheSize: 50
               HitRate: 0
             Occupancy: 0
             CheckMode: 'none'
        CheckTolerance: 1.0000e-04
    
    

    The returned AcceleratedFunction object stores the traces of underlying function calls and reuses the cached result when the same input pattern reoccurs. To use the accelerated function in a custom training loop, replace calls to the model gradients function with calls to the accelerated function. You can invoke the accelerated function as you would invoke the underlying function. Note that the accelerated function is not a function handle.

    Evaluate the accelerated model gradients function with random data using the dlfeval function.

    X = rand(28,28,1,128,"single");
    X = dlarray(X,"SSCB");
    
    T = categorical(classNames(randi(10,[128 1])));
    T = onehotencode(T,2)';
    T = dlarray(T,"CB");
    
    [loss,gradients,state] = dlfeval(accfun,net,X,T);

    View the Occupancy property of the accelerated function. Because the function has been evaluated, the cache is nonempty.

    accfun.Occupancy
    ans = 
    2
    

    Model Loss Function

    The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with corresponding target labels T and returns the loss, the gradients of the loss with respect to the learnable parameters in net, and the network state. To compute the gradients, use the dlgradient function.

    function [loss,gradients,state] = modelLoss(net,X,T)
    
    [Y,state] = forward(net,X);
    loss = crossentropy(Y,T);
    gradients = dlgradient(loss,net.Learnables);
    
    end

    Load the dlnetwork object and class names from the MAT file dlnetDigits.mat.

    s = load("dlnetDigits.mat");
    net = s.net;
    classNames = s.classNames;

    Accelerate the model loss function modelLoss listed at the end of the example.

    fun = @modelLoss;
    accfun = dlaccelerate(fun);

    Clear any previously cached traces of the accelerated function using the clearCache function.

    clearCache(accfun)

    View the properties of the accelerated function. Because the cache is empty, the Occupancy property is 0.

    accfun
    accfun = 
      AcceleratedFunction with properties:
    
              Function: @modelLoss
               Enabled: 1
             CacheSize: 50
               HitRate: 0
             Occupancy: 0
             CheckMode: 'none'
        CheckTolerance: 1.0000e-04
    
    

    The returned AcceleratedFunction object stores the traces of underlying function calls and reuses the cached result when the same input pattern reoccurs. To use the accelerated function in a custom training loop, replace calls to the model gradients function with calls to the accelerated function. You can invoke the accelerated function as you would invoke the underlying function. Note that the accelerated function is not a function handle.

    Evaluate the accelerated model gradients function with random data using the dlfeval function.

    X = rand(28,28,1,128,"single");
    X = dlarray(X,"SSCB");
    
    T = categorical(classNames(randi(10,[128 1])));
    T = onehotencode(T,2)';
    T = dlarray(T,"CB");
    
    [loss,gradients,state] = dlfeval(accfun,net,X,T);

    View the Occupancy property of the accelerated function. Because the function has been evaluated, the cache is nonempty.

    accfun.Occupancy
    ans = 
    2
    

    Clear the cache using the clearCache function.

    clearCache(accfun)

    View the Occupancy property of the accelerated function. Because the cache has been cleared, the cache is empty.

    accfun.Occupancy
    ans = 
    0
    

    Model Loss Function

    The modelLoss function takes a dlnetwork object net, a mini-batch of input data X with corresponding target labels T and returns the loss, the gradients of the loss with respect to the learnable parameters in net, and the network state. To compute the gradients, use the dlgradient function.

    function [loss,gradients,state] = modelLoss(net,X,T)
    
    [Y,state] = forward(net,X);
    loss = crossentropy(Y,T);
    gradients = dlgradient(loss,net.Learnables);
    
    end

    This example shows how to check that the outputs of accelerated functions match the outputs of the underlying function.

    In some cases, the outputs of accelerated functions differ to the outputs of the underlying function. For example, you must take care when accelerating functions that use random number generation, such as a function that generates random noise to add to the network input. When caching the trace of a function that generates random numbers that are not dlarray objects, the accelerated function caches resulting random numbers in the trace. When reusing the trace, the accelerated function uses the cached random values. The accelerated function does not generate new random values.

    To check that the outputs of the accelerated function match the outputs of the underlying function, use the CheckMode property of the accelerated function. When the CheckMode property of the accelerated function is 'tolerance' and the outputs differ by more than a specified tolerance, the accelerated function throws a warning.

    Accelerate the function myUnsupportedFun, listed at the end of the example using the dlaccelerate function. The function myUnsupportedFun generates random noise and adds it to the input. This function does not support acceleration because the function generates random numbers that are not dlarray objects.

    accfun = dlaccelerate(@myUnsupportedFun)
    accfun = 
      AcceleratedFunction with properties:
    
              Function: @myUnsupportedFun
               Enabled: 1
             CacheSize: 50
               HitRate: 0
             Occupancy: 0
             CheckMode: 'none'
        CheckTolerance: 1.0000e-04
    
    

    Clear any previously cached traces using the clearCache function.

    clearCache(accfun)

    To check that the outputs of reused cached traces match the outputs of the underlying function, set the CheckMode property to 'tolerance'.

    accfun.CheckMode = 'tolerance'
    accfun = 
      AcceleratedFunction with properties:
    
              Function: @myUnsupportedFun
               Enabled: 1
             CacheSize: 50
               HitRate: 0
             Occupancy: 0
             CheckMode: 'tolerance'
        CheckTolerance: 1.0000e-04
    
    

    Evaluate the accelerated function with an array of ones as input, specified as a dlarray input.

    dlX = dlarray(ones(3,3));
    dlY = accfun(dlX)
    dlY = 
      3×3 dlarray
    
        1.8147    1.9134    1.2785
        1.9058    1.6324    1.5469
        1.1270    1.0975    1.9575
    
    

    Evaluate the accelerated function again with the same input. Because the accelerated function reuses the cached random noise values instead of generating new random values, the outputs of the reused trace differs from the outputs of the underlying function. When the CheckMode property of the accelerated function is 'tolerance' and the outputs differ, the accelerated function throws a warning.

    dlY = accfun(dlX)
    Warning: Accelerated outputs differ from underlying function outputs.
    
    dlY = 
      3×3 dlarray
    
        1.8147    1.9134    1.2785
        1.9058    1.6324    1.5469
        1.1270    1.0975    1.9575
    
    

    Random number generation using the 'like' option of the rand function with a dlarray object supports acceleration. To use random number generation in an accelerated function, ensure that the function uses the rand function with the 'like' option set to a traced dlarray object (a dlarray object that depends on an input dlarray object).

    Accelerate the function mySupportedFun, listed at the end of the example. The function mySupportedFun adds noise to the input by generating noise using the 'like' option with a traced dlarray object.

    accfun2 = dlaccelerate(@mySupportedFun);

    Clear any previously cached traces using the clearCache function.

    clearCache(accfun2)

    To check that the outputs of reused cached traces match the outputs of the underlying function, set the CheckMode property to 'tolerance'.

    accfun2.CheckMode = 'tolerance';

    Evaluate the accelerated function twice with the same input as before. Because the outputs of the reused cache match the outputs of the underlying function, the accelerated function does not throw a warning.

    dlY = accfun2(dlX)
    dlY = 
      3×3 dlarray
    
        1.7922    1.0357    1.6787
        1.9595    1.8491    1.7577
        1.6557    1.9340    1.7431
    
    
    dlY = accfun2(dlX)
    dlY = 
      3×3 dlarray
    
        1.3922    1.7060    1.0462
        1.6555    1.0318    1.0971
        1.1712    1.2769    1.8235
    
    

    Checking the outputs match requires extra processing and increases the time required for function evaluation. After checking the outputs, set the CheckMode property to 'none'.

    accfun1.CheckMode = 'none';
    accfun2.CheckMode = 'none';

    Example Functions

    The function myUnsupportedFun generates random noise and adds it to the input. This function does not support acceleration because the function generates random numbers that are not dlarray objects.

    function out = myUnsupportedFun(dlX)
    
    sz = size(dlX);
    noise = rand(sz);
    out = dlX + noise;
    
    end

    The function mySupportedFun adds noise to the input by generating noise using the 'like' option with a traced dlarray object.

    function out = mySupportedFun(dlX)
    
    sz = size(dlX);
    noise = rand(sz,'like',dlX);
    out = dlX + noise;
    
    end

    Version History

    Introduced in R2021a