simulate
Simulate coefficients and innovations covariance matrix of Bayesian vector autoregression (VAR) model
Since R2020a
Syntax
Description
[
returns a random vector of coefficients Coeff
,Sigma
]
= simulate(PriorMdl
)Coeff
and a random innovations covariance matrix Sigma
drawn from the prior Bayesian VAR(p) model
PriorMdl
.
[
specifies options using one or more name-value pair arguments in addition to any of the input argument combinations in the previous syntaxes. For example, you can set the number of random draws from the distribution or specify the presample response data.Coeff
,Sigma
]
= simulate(___,Name,Value
)
Examples
Draw Coefficients and Innovations Covariance Matrix from Prior Distribution
Consider the 3-D VAR(4) model for the US inflation (INFL
), unemployment (UNRATE
), and federal funds (FEDFUNDS
) rates.
For all , is a series of independent 3-D normal innovations with a mean of 0 and covariance . Assume that a conjugate prior distribution governs the behavior of the parameters.
Create a conjugate prior model. Specify the response series names. Obtain a summary of the prior distribution.
seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; numseries = numel(seriesnames); numlags = 4; PriorMdl = bayesvarm(numseries,numlags,'ModelType','conjugate',... 'SeriesNames',seriesnames); Summary = summarize(PriorMdl,'off');
Draw a set of coefficients and an innovations covariance matrix from the prior distribution.
rng(1) % For reproducibility
[Coeff,Sigma] = simulate(PriorMdl);
Display the selected coefficients with corresponding names and the innovations covariance matrix.
table(Coeff,'RowNames',Summary.CoeffMap)
ans=39×1 table
Coeff
__________
AR{1}(1,1) 0.44999
AR{1}(1,2) 0.047463
AR{1}(1,3) -0.042106
AR{2}(1,1) -0.0086264
AR{2}(1,2) 0.034049
AR{2}(1,3) -0.058092
AR{3}(1,1) -0.015698
AR{3}(1,2) -0.053203
AR{3}(1,3) -0.031138
AR{4}(1,1) 0.036431
AR{4}(1,2) -0.058279
AR{4}(1,3) -0.02195
Constant(1) -1.001
AR{1}(2,1) -0.068182
AR{1}(2,2) 0.51029
AR{1}(2,3) -0.094367
⋮
AR{r}(j,k) is the AR coefficient of response variable k (lagged r units) in response equation j.
Sigma
Sigma = 3×3
0.1238 -0.0053 -0.0369
-0.0053 0.0456 0.0160
-0.0369 0.0160 0.1039
Rows and columns of Sigma
correspond to the innovations in the response equations ordered by PriorMdl.SeriesNames
.
Simulate Parameters from Analytically Tractable Posterior Distribution
Consider the 3-D VAR(4) model of Draw Coefficients and Innovations Covariance Matrix from Prior Distribution. In this case, assume that the prior distribution is diffuse.
Load and Preprocess Data
Load the US macroeconomic data set. Compute the inflation rate, stabilize the unemployment and federal funds rates, and remove missing values.
load Data_USEconModel seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; DataTimeTable.INFL = 100*[NaN; price2ret(DataTimeTable.CPIAUCSL)]; DataTimeTable.DUNRATE = [NaN; diff(DataTimeTable.UNRATE)]; DataTimeTable.DFEDFUNDS = [NaN; diff(DataTimeTable.FEDFUNDS)]; seriesnames(2:3) = "D" + seriesnames(2:3); rmDataTimeTable = rmmissing(DataTimeTable);
Create Prior Model
Create a diffuse Bayesian VAR(4) prior model for the three response series. Specify the response series names.
numseries = numel(seriesnames);
numlags = 4;
PriorMdl = bayesvarm(numseries,numlags,'SeriesNames',seriesnames);
Estimate Posterior Distribution
Estimate the posterior distribution. Return the estimation summary.
[PosteriorMdl,Summary] = estimate(PriorMdl,rmDataTimeTable{:,seriesnames});
Bayesian VAR under diffuse priors Effective Sample Size: 197 Number of equations: 3 Number of estimated Parameters: 39 | Mean Std ------------------------------- Constant(1) | 0.1007 0.0832 Constant(2) | -0.0499 0.0450 Constant(3) | -0.4221 0.1781 AR{1}(1,1) | 0.1241 0.0762 AR{1}(2,1) | -0.0219 0.0413 AR{1}(3,1) | -0.1586 0.1632 AR{1}(1,2) | -0.4809 0.1536 AR{1}(2,2) | 0.4716 0.0831 AR{1}(3,2) | -1.4368 0.3287 AR{1}(1,3) | 0.1005 0.0390 AR{1}(2,3) | 0.0391 0.0211 AR{1}(3,3) | -0.2905 0.0835 AR{2}(1,1) | 0.3236 0.0868 AR{2}(2,1) | 0.0913 0.0469 AR{2}(3,1) | 0.3403 0.1857 AR{2}(1,2) | -0.0503 0.1647 AR{2}(2,2) | 0.2414 0.0891 AR{2}(3,2) | -0.2968 0.3526 AR{2}(1,3) | 0.0450 0.0413 AR{2}(2,3) | 0.0536 0.0223 AR{2}(3,3) | -0.3117 0.0883 AR{3}(1,1) | 0.4272 0.0860 AR{3}(2,1) | -0.0389 0.0465 AR{3}(3,1) | 0.2848 0.1841 AR{3}(1,2) | 0.2738 0.1620 AR{3}(2,2) | 0.0552 0.0876 AR{3}(3,2) | -0.7401 0.3466 AR{3}(1,3) | 0.0523 0.0428 AR{3}(2,3) | 0.0008 0.0232 AR{3}(3,3) | 0.0028 0.0917 AR{4}(1,1) | 0.0167 0.0901 AR{4}(2,1) | 0.0285 0.0488 AR{4}(3,1) | -0.0690 0.1928 AR{4}(1,2) | -0.1830 0.1520 AR{4}(2,2) | -0.1795 0.0822 AR{4}(3,2) | 0.1494 0.3253 AR{4}(1,3) | 0.0067 0.0395 AR{4}(2,3) | 0.0088 0.0214 AR{4}(3,3) | -0.1372 0.0845 Innovations Covariance Matrix | INFL DUNRATE DFEDFUNDS ------------------------------------------- INFL | 0.3028 -0.0217 0.1579 | (0.0321) (0.0124) (0.0499) DUNRATE | -0.0217 0.0887 -0.1435 | (0.0124) (0.0094) (0.0283) DFEDFUNDS | 0.1579 -0.1435 1.3872 | (0.0499) (0.0283) (0.1470)
PosteriorMdl
is a conjugatebvarm
model, which is analytically tractable.
Simulate Parameters from Posterior
Draw 1000 samples from the posterior distribution.
rng(1)
[Coeff,Sigma] = simulate(PosteriorMdl,'NumDraws',1000);
Coeff
is a 39-by-1000 matrix of randomly drawn coefficients. Each column is an individual draw, and each row is an individual coefficient. Sigma
is a 3-by-3-by-1000 array of randomly drawn innovations covariance matrices. Each page is an individual draw.
Display the first coefficient drawn from the distribution with corresponding parameter names, and display the first drawn innovations covariance matrix.
Coeffs = table(Coeff(:,1),'RowNames',Summary.CoeffMap)
Coeffs=39×1 table
Var1
_________
AR{1}(1,1) 0.14994
AR{1}(1,2) -0.46927
AR{1}(1,3) 0.088388
AR{2}(1,1) 0.28139
AR{2}(1,2) -0.19597
AR{2}(1,3) 0.049222
AR{3}(1,1) 0.3946
AR{3}(1,2) 0.081871
AR{3}(1,3) 0.002117
AR{4}(1,1) 0.13514
AR{4}(1,2) -0.23661
AR{4}(1,3) -0.01869
Constant(1) 0.035787
AR{1}(2,1) 0.0027895
AR{1}(2,2) 0.62382
AR{1}(2,3) 0.053232
⋮
Sigma(:,:,1)
ans = 3×3
0.2653 -0.0075 0.1483
-0.0075 0.1015 -0.1435
0.1483 -0.1435 1.5042
Simulate Parameters from Analytically Intractable Posterior Distribution
Consider the 3-D VAR(4) model of Draw Coefficients and Innovations Covariance Matrix from Prior Distribution. In this case, assume that the prior distribution is semiconjugate.
Load and Preprocess Data
Load the US macroeconomic data set. Compute the inflation rate, stabilize the unemployment and federal funds rates, and remove missing values.
load Data_USEconModel seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; DataTimeTable.INFL = 100*[NaN; price2ret(DataTimeTable.CPIAUCSL)]; DataTimeTable.DUNRATE = [NaN; diff(DataTimeTable.UNRATE)]; DataTimeTable.DFEDFUNDS = [NaN; diff(DataTimeTable.FEDFUNDS)]; seriesnames(2:3) = "D" + seriesnames(2:3); rmDataTimeTable = rmmissing(DataTimeTable);
Create Prior Model
Create a semiconjugate Bayesian VAR(4) prior model for the three response series. Specify the response variable names.
numseries = numel(seriesnames); numlags = 4; PriorMdl = bayesvarm(numseries,numlags,'Model','semiconjugate',... 'SeriesNames',seriesnames);
Simulate Parameters from Posterior
Because the joint posterior distribution of a semiconjugate prior model is analytically intractable, simulate
sequentially draws from the full conditional distributions.
Draw 1000 samples from the posterior distribution. Specify a burn-in period of 10,000, and a thinning factor of 5. Start the Gibbs sampler by assuming the posterior mean of is the 3-D identity matrix.
rng(1) [Coeff,Sigma] = simulate(PriorMdl,rmDataTimeTable{:,seriesnames},... 'NumDraws',1000,'BurnIn',1e4,'Thin',5,'Sigma0',eye(3));
Coeff
is a 39-by-1000 matrix of randomly drawn coefficients. Each column is an individual draw, and each row is an individual coefficient. Sigma
is a 3-by-3-by-1000 array of randomly drawn innovations covariance matrices. Each page is an individual draw.
Simulate Coefficients from VARX Model
Consider the 2-D VARX(1) model for the US real GDP (RGDP
) and investment (GCE
) rates that treats the personal consumption (PCEC
) rate as exogenous:
For all , is a series of independent 2-D normal innovations with a mean of 0 and covariance . Assume the following prior distributions:
, where M is a 4-by-2 matrix of means and is the 4-by-4 among-coefficient scale matrix. Equivalently, .
where Ω is the 2-by-2 scale matrix and is the degrees of freedom.
Load the US macroeconomic data set. Compute the real GDP, investment, and personal consumption rate series. Remove all missing values from the resulting series.
load Data_USEconModel DataTimeTable.RGDP = DataTimeTable.GDP./DataTimeTable.GDPDEF; seriesnames = ["PCEC"; "RGDP"; "GCE"]; rates = varfun(@price2ret,DataTimeTable,'InputVariables',seriesnames); rates = rmmissing(rates); rates.Properties.VariableNames = seriesnames;
Create a conjugate prior model for the 2-D VARX(1) model parameters.
numseries = 2; numlags = 1; numpredictors = 1; PriorMdl = conjugatebvarm(numseries,numlags,'NumPredictors',numpredictors,... 'SeriesNames',seriesnames(2:end));
Simulate directly from the posterior distribution. Specify the exogenous predictor data.
[Coeff,Sigma] = simulate(PriorMdl,rates{:,PriorMdl.SeriesNames},... 'X',rates{:,seriesnames(1)});
By default, simulate
uses the first p = 1 observations of the response data to initialize the dynamic component of the model, and removes the corresponding observations from the predictor data.
Input Arguments
PriorMdl
— Prior Bayesian VAR model
conjugatebvarm
model object | semiconjugatebvarm
model object | diffusebvarm
model object | normalbvarm
model object
Prior Bayesian VAR model, specified as a model object in this table.
Model Object | Description |
---|---|
conjugatebvarm | Dependent, matrix-normal-inverse-Wishart conjugate model returned by bayesvarm or conjugatebvarm |
semiconjugatebvarm | Independent, normal-inverse-Wishart semiconjugate prior model returned by bayesvarm or semiconjugatebvarm |
diffusebvarm | Diffuse prior model returned by bayesvarm or diffusebvarm |
normalbvarm | Normal conjugate model with a fixed innovations covariance matrix, returned by bayesvarm or normalbvarm |
Y
— Observed multivariate response series
numeric matrix
Observed multivariate response series to which simulate
fits the model, specified as a numobs
-by-numseries
numeric matrix.
numobs
is the sample size. numseries
is the number of response variables (PriorMdl.NumSeries
).
Rows correspond to observations, and the last row contains the latest observation. Columns correspond to individual response variables.
Y
represents the continuation of the presample response series in Y0
.
Data Types: double
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: 'Y0',Y0,'X',X
specifies the presample response data Y0
to initialize the VAR model for posterior estimation, and the predictor data X
for the exogenous regression component.
NumDraws
— Number of random draws
1
(default) | positive integer
Number of random draws from the distributions, specified as the comma-separated pair consisting of 'NumDraws'
and a positive integer.
Example: 'NumDraws',1e7
Data Types: double
Y0
— Presample response data
numeric matrix
Presample response data to initialize the VAR model for estimation, specified as the comma-separated pair consisting of 'Y0'
and a numpreobs
-by-numseries
numeric matrix. numpreobs
is the number of presample observations.
Rows correspond to presample observations, and the last row contains the latest observation. Y0
must have at least PriorMdl.P
rows. If you supply more rows than necessary, simulate
uses the latest PriorMdl.P
observations only.
Columns must correspond to the response series in Y
.
By default, simulate
uses Y(1:PriorMdl.P,:)
as presample observations, and then estimates the posterior using Y((PriorMdl.P + 1):end,:)
. This action reduces the effective sample size.
Data Types: double
X
— Predictor data
numeric matrix
Predictor data for the exogenous regression component in the model, specified as the comma-separated pair consisting of 'X'
and a numobs
-by-PriorMdl.NumPredictors
numeric matrix.
Rows correspond to observations, and the last row contains the latest observation. simulate
does not use the regression component in the presample period. X
must have at least as many observations as the observations used after the presample period.
In either case, if you supply more rows than necessary, simulate
uses the latest observations only.
Columns correspond to individual predictor variables. All predictor variables are present in the regression component of each response equation.
Data Types: double
BurnIn
— Number of draws to remove from beginning of sample
0
(default) | nonnegative scalar
Number of draws to remove from the beginning of the sample to reduce transient effects, specified as the comma-separated pair consisting of 'BurnIn'
and a nonnegative scalar. For details on how simulate
reduces the full sample, see Algorithms.
Tip
To help you specify the appropriate burn-in period size:
Determine the extent of the transient behavior in the sample by setting the
BurnIn
name-value argument to0
.Simulate a few thousand observations by using
simulate
.Create trace plots.
Example: 'BurnIn',0
Data Types: double
Thin
— Adjusted sample size multiplier
1
(default) | positive integer
Adjusted sample size multiplier, specified as the comma-separated pair consisting of 'Thin'
and a positive integer.
The actual sample size is BurnIn
+ NumDraws
*Thin
. After discarding the burn-in, simulate
discards every Thin
– 1
draws, and then retains the next draw. For more details on how simulate
reduces the full sample, see Algorithms.
Tip
To reduce potential large serial correlation in the sample, or to reduce the memory consumption of the draws stored in Coeff
and Sigma
, specify a large value for Thin
.
Example: 'Thin',5
Data Types: double
Coeff0
— Starting value of VAR model coefficients for Gibbs sampler
numeric column vector
Starting value of the VAR model coefficients for the Gibbs sampler, specified as the comma-separated pair consisting of 'Coeff0'
and a numeric column vector with (PriorMdl.NumSeries*
)-by-k
NumDraws
elements, where
, which is the number of coefficients in a response equation. For details on the structure of k
= PriorMdl.NumSeries*PriorMdl.P + PriorMdl.IncludeIntercept + PriorMdl.IncludeTrend + PriorMdl.NumPredictorsCoeff0
, see the output Coeff
.
By default, Coeff0
is the multivariate least-squares estimate.
Tip
To specify
Coeff0
:Set separate variables for the initial values each coefficient matrix and vector.
Horizontally concatenate all coefficient means in this order:
Vectorize the transpose of the coefficient mean matrix.
Coeff0 = Coeff.'; Coeff0 = Coeff0(:);
A good practice is to run
simulate
multiple times with different parameter starting values. Verify that the estimates from each run converge to similar values.
Data Types: double
Sigma0
— Starting value of innovations covariance matrix for Gibbs sampler
positive definite numeric matrix
Starting value of the innovations covariance matrix for the Gibbs sampler, specified as the comma-separated pair consisting of 'Sigma0'
and a PriorMdl.NumSeries
-by-PriorMdl.NumSeries
positive definite numeric matrix. By default, Sigma0
is the residual mean squared error from multivariate least-squares. Rows and columns correspond to innovations in the equations of the response variables ordered by PriorMdl.SeriesNames
.
Tip
A good practice is to run simulate
multiple times with different parameter starting values. Verify that the estimates from each run converge to similar values.
Data Types: double
Output Arguments
Coeff
— Simulated VAR model coefficients
numeric matrix
Simulated VAR model coefficients, returned as a (PriorMdl.NumSeries*
)-by-k
NumDraws
numeric matrix, where
, which is the number of coefficients in a response equation. Each column is a separate draw from the distribution.k
= PriorMdl.NumSeries*PriorMdl.P + PriorMdl.IncludeIntercept + PriorMdl.IncludeTrend + PriorMdl.NumPredictors
For draw
, j
Coeff(1:
corresponds to all coefficients in the equation of response variable k
,j
)PriorMdl.SeriesNames(1)
, Coeff((
corresponds to all coefficients in the equation of response variable k
+ 1):(2*k
),j
)PriorMdl.SeriesNames(2)
, and so on. For a set of indices corresponding to an equation:
Elements
1
throughPriorMdl.NumSeries
correspond to the lag 1 AR coefficients of the response variables ordered byPriorMdl.SeriesNames
.Elements
PriorMdl.NumSeries + 1
through2*PriorMdl.NumSeries
correspond to the lag 2 AR coefficients of the response variables ordered byPriorMdl.SeriesNames
.In general, elements
(
throughq
– 1)*PriorMdl.NumSeries + 1
correspond to the lagq
*PriorMdl.NumSeries
AR coefficients of the response variables ordered byq
PriorMdl.SeriesNames
.If
PriorMdl.IncludeConstant
istrue
, elementPriorMdl.NumSeries*PriorMdl.P + 1
is the model constant.If
PriorMdl.IncludeTrend
istrue
, elementPriorMdl.NumSeries*PriorMdl.P + 2
is the linear time trend coefficient.If
PriorMdl.NumPredictors
> 0, elementsPriorMdl.NumSeries*PriorMdl.P + 3
through
compose the vector of regression coefficients of the exogenous variables.k
This figure shows the structure of Coeff(L,
for a 2-D VAR(3) model that contains a constant vector and four exogenous predictors.j
)
where
ϕq,jk is element (j,k) of the lag q AR coefficient matrix.
cj is the model constant in the equation of response variable j.
Bju is the regression coefficient of exogenous variable u in the equation of response variable j.
Sigma
— Simulated innovations covariance matrices
array of positive definite numeric matrices
Simulated innovations covariance matrices, returned as a PriorMdl.NumSeries
-by-PriorMdl.NumSeries
-by-NumDraws
array of positive definite numeric matrices.
Each page is a separate draw (covariance) from the distribution. Rows and columns correspond to innovations in the equations of the response variables ordered by PriorMdl.SeriesNames
.
If PriorMdl
is a normalbvarm
object, all covariances in Sigma
are equal to PriorMdl.Covariance
.
Limitations
simulate
cannot draw values from an improper distribution, which is a distribution whose density does not integrate to 1.
More About
Bayesian Vector Autoregression (VAR) Model
A Bayesian VAR model treats all coefficients and the innovations covariance matrix as random variables in the m-dimensional, stationary VARX(p) model. The model has one of the three forms described in this table.
Model | Equation |
---|---|
Reduced-form VAR(p) in difference-equation notation |
|
Multivariate regression |
|
Matrix regression |
|
For each time t = 1,...,T:
yt is the m-dimensional observed response vector, where m =
numseries
.Φ1,…,Φp are the m-by-m AR coefficient matrices of lags 1 through p, where p =
numlags
.c is the m-by-1 vector of model constants if
IncludeConstant
istrue
.δ is the m-by-1 vector of linear time trend coefficients if
IncludeTrend
istrue
.Β is the m-by-r matrix of regression coefficients of the r-by-1 vector of observed exogenous predictors xt, where r =
NumPredictors
. All predictor variables appear in each equation.which is a 1-by-(mp + r + 2) vector, and Zt is the m-by-m(mp + r + 2) block diagonal matrix
where 0z is a 1-by-(mp + r + 2) vector of zeros.
, which is an (mp + r + 2)-by-m random matrix of the coefficients, and the m(mp + r + 2)-by-1 vector λ = vec(Λ).
εt is an m-by-1 vector of random, serially uncorrelated, multivariate normal innovations with the zero vector for the mean and the m-by-m matrix Σ for the covariance. This assumption implies that the data likelihood is
where f is the m-dimensional multivariate normal density with mean ztΛ and covariance Σ, evaluated at yt.
Before considering the data, you impose a joint prior distribution assumption on (Λ,Σ), which is governed by the distribution π(Λ,Σ). In a Bayesian analysis, the distribution of the parameters is updated with information about the parameters obtained from the data likelihood. The result is the joint posterior distribution π(Λ,Σ|Y,X,Y0), where:
Y is a T-by-m matrix containing the entire response series {yt}, t = 1,…,T.
X is a T-by-m matrix containing the entire exogenous series {xt}, t = 1,…,T.
Y0 is a p-by-m matrix of presample data used to initialize the VAR model for estimation.
Tips
Monte Carlo simulation is subject to variation. If
simulate
uses Monte Carlo simulation, then estimates and inferences might vary when you callsimulate
multiple times under seemingly equivalent conditions. To reproduce estimation results, set a random number seed by usingrng
before callingsimulate
.
Algorithms
If
simulate
estimates a posterior distribution (when you supplyY
) and the posterior is analytically tractable,simulate
simulates directly from the posterior. Otherwise,simulate
uses the Gibbs sampler to estimate the posterior.This figure shows how
simulate
reduces the sample by using the values ofNumDraws
,Thin
, andBurnIn
. Rectangles represent successive draws from the distribution.simulate
removes the white rectangles from the sample. The remainingNumDraws
black rectangles compose the sample.If
PriorMdl
is asemiconjugatebvarm
object and you do not specify starting values (Coeff0
andSigma0
),simulate
samples from the posterior distribution by applying the Gibbs sampler.simulate
uses the default value ofSigma0
for Σ and draws a value of Λ from π(Λ|Σ,Y,X), the full conditional distribution of the VAR model coefficients.simulate
draws a value of Σ from π(Σ|Λ,Y,X), the full conditional distribution of the innovations covariance matrix, by using the previously generated value of Λ.The function repeats steps 1 and 2 until convergence. To assess convergence, draw a trace plot of the sample.
If you specify
Coeff0
,simulate
draws a value of Σ from π(Σ|Λ,Y,X) to start the Gibbs sampler.simulate
does not return default starting values that it generates.
Version History
Introduced in R2020a
See Also
Objects
Functions
MATLAB 命令
您点击的链接对应于以下 MATLAB 命令:
请在 MATLAB 命令行窗口中直接输入以执行命令。Web 浏览器不支持 MATLAB 命令。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)