normalvolbysabr
Implied Normal (Bachelier) volatility by SABR model
Syntax
Description
calculates the implied Normal (Bachelier) volatility by using the SABR stochastic
volatility model.outVol
= normalvolbysabr(Alpha
,Beta
,Rho
,Nu
,Settle
,ExerciseDate
,ForwardValue
,Strike
)
specifies options using one or more name-value pair arguments in addition to the input
arguments in the previous syntax.outVol
= normalvolbysabr(___,Name,Value
)
Examples
Input Arguments
Output Arguments
Algorithms
The two general case algorithms for normalvolbysabr
are not
At-The-Money (ATM) and ATM.
For not ATM (F ≠ K):
For ATM (F = K):
The special case for normalvolbysabr
where β = 0 for not ATM
(F ≠ K) is:
For ATM (F = K):
The special case for normalvolbysabr
where β = 1 for not ATM
(F ≠ K) is:
For ATM (F = K):
References
[1] Hagan, P. S., D. Kumar, A.S. Lesniewski, and D.E. Woodward. "Managing Smile Risk." Wilmott Magazine. September 2002, pp. 84–108.
Version History
Introduced in R2018bSee Also
swaptionbyblk
| swaptionbynormal
| optsensbysabr
Topics
- Calibrate the SABR Model Using Normal (Bachelier) Volatilities with Negative Strikes
- Price Swaptions with Negative Strikes Using the Shifted SABR Model
- Calibrate the SABR Model
- Price a Swaption Using the SABR Model
- Work with Negative Interest Rates Using Functions
- Supported Interest-Rate Instrument Functions