主要内容

在线状态估计

在命令行和 Simulink® 中使用线性和非线性卡尔曼滤波器估计模型参数

您可以使用实时数据和线性、扩展或无迹卡尔曼滤波算法来估计系统的状态。您可以使用 System Identification Toolbox™ 库的 Estimators 子库中的 Simulink 模块执行在线状态估计。然后,您可以使用 Simulink Coder™ 为这些模块生成 C/C++ 代码,并将此代码部署到嵌入式目标。还可以在命令行中执行在线状态估计,并使用 MATLAB® Compiler™MATLAB Coder 部署您的代码。

函数

extendedKalmanFilterCreate extended Kalman filter object for online state estimation
unscentedKalmanFilterCreate unscented Kalman filter object for online state estimation
particleFilterParticle filter object for online state estimation
correctCorrect state and state estimation error covariance using extended or unscented Kalman filter, or particle filter and measurements
residualReturn measurement residual and residual covariance when using extended or unscented Kalman filter
predictPredict state and state estimation error covariance at next time step using extended or unscented Kalman filter, or particle filter
initializeInitialize the state of the particle filter
cloneCopy online state estimation object
generateJacobianFcnGenerate MATLAB Jacobian functions for extended Kalman filter using automatic differentiation (自 R2023a 起)

模块

Kalman FilterEstimate states of discrete-time or continuous-time linear system
Extended Kalman FilterEstimate states of discrete-time nonlinear system using extended Kalman filter
Particle FilterEstimate states of discrete-time nonlinear system using particle filter
Unscented Kalman FilterEstimate states of discrete-time nonlinear system using unscented Kalman filter

主题

在线估计基础知识

Simulink 中执行在线状态估计

在命令行中执行在线状态估计

疑难解答

Troubleshoot Online State Estimation

Troubleshoot online state estimation performed using extended and unscented Kalman filter algorithms.