unscentedKalmanFilter
Create unscented Kalman filter object for online state estimation
说明
unscentedKalmanFilter creates an object for online state estimation of a discrete-time nonlinear system using the discrete-time unscented Kalman filter algorithm.
When you perform online state estimation, you first create the nonlinear state transition function f and measurement function h. You then construct the unscentedKalmanFilter object using these nonlinear functions, and specify whether the noise terms are additive or nonadditive.
After you create the object, you use the predict command to predict state estimates at the next time step, and correct to correct state estimates using the unscented Kalman filter algorithm and real-time data. For information about the algorithm, see Algorithms.
创建对象
语法
Description
creates an unscented Kalman filter object for online state estimation of a discrete-time nonlinear system.obj = unscentedKalmanFilter(stateTransitionFcn,measurementFcn,initialState)
stateTransitionFcnis a function that calculates the state of the system at time k, given the state vector at time k-1. This function is stored in theStateTransitionFcnproperty of the object.measurementFcnis a function that calculates the output measurement of the system at time k, given the state at time k. This function is stored in theMeasurementFcnproperty of the object.initialStatespecifies the initial value of the state estimates. This value is stored in theStateproperty of the object.
After creating the object, use the correct and predict functions to update state estimates and state estimation error covariance values using a discrete-time unscented Kalman filter algorithm and real-time data.
predictupdatesobj.Stateandobj.StateCovariancewith the predicted value at time step k using the state value at time step k–1.correctupdatesobj.Stateandobj.StateCovariancewith the estimated values at time step k using measured data at time step k.
additionally sets properties using name-value arguments. If you do not specify the state transition function, measurement function, and initial state values during creation, specify them using dot notation. For example, for a two-state system with initial state values obj = unscentedKalmanFilter(___,Name,Value)[1;0], to specify these values after creation, use obj.State = [1;0].
属性
对象函数
correct | Correct state and state estimation error covariance using extended or unscented Kalman filter, or particle filter and measurements |
predict | Predict state and state estimation error covariance at next time step using extended or unscented Kalman filter, or particle filter |
residual | Return measurement residual and residual covariance when using extended or unscented Kalman filter |
clone | Copy online state estimation object |
示例
算法
The discrete-time unscented Kalman filter algorithm performs online state estimation of a discrete-time nonlinear system.
Consider a plant with states x, input u, output y, process noise w, and measurement noise v. Assume that you can represent the plant as a nonlinear system.

The algorithm computes the state estimates of the nonlinear system using state transition and measurement functions specified by you. The software lets you specify the noise in these functions as additive or nonadditive:
Additive Noise Terms — The state transition and measurements equations have the following form:
Here f is a nonlinear state transition function that describes the evolution of states
xfrom one time step to the next. The nonlinear measurement function h relatesxto the measurementsyat time stepk.wandvare the zero-mean, uncorrelated process and measurement noises, respectively. These functions can also have additional input arguments that are denoted byusandumin the equations. For example, the additional arguments could be time stepkor the inputsuto the nonlinear system. There can be multiple such arguments.Note that the noise terms in both equations are additive. That is,
x(k)is linearly related to the process noisew(k-1), andy(k)is linearly related to the measurement noisev(k).Nonadditive Noise Terms — The software also supports more complex state transition and measurement functions where the state x[k] and measurement y[k] are nonlinear functions of the process noise and measurement noise, respectively. When the noise terms are nonadditive, the state transition and measurements equation have the following form:
When you perform online state estimation, you first create the nonlinear state transition function f and measurement function h. You then construct the unscentedKalmanFilter object using these nonlinear functions and specify whether the noise terms are additive or nonadditive.
After you create the object, you use the predict command to predict state estimates at the next time step, and correct to correct state estimates using the unscented Kalman filter algorithm and real-time data. For additional details about the algorithm, see Extended and Unscented Kalman Filter Algorithms for Online State Estimation.
扩展功能
版本历史记录
在 R2016b 中推出另请参阅
函数
predict|correct|residual|clone|extendedKalmanFilter
模块
主题
- Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter
- Generate Code for Online State Estimation in MATLAB
- What Is Online Estimation?
- Extended and Unscented Kalman Filter Algorithms for Online State Estimation
- Validate Online State Estimation at the Command Line
- Troubleshoot Online State Estimation