Main Content

本页的翻译已过时。点击此处可查看最新英文版本。

strel

形态学结构元素

说明

strel 对象表示一个平面形态学结构元素,该元素是形态学膨胀和腐蚀运算的重要部分。

平面结构元素是一个二维或多维的二值邻域,其中 true 像素包括在形态学运算中,false 像素不包括在内。结构元素的中心像素称为原点,用于标识图像中正在处理的像素。使用 strel 函数(如下所述)创建一个平面结构元素。您可以将平面结构元素用于二值图像和灰度图像。下图说明平面结构元素。

要创建一个非平面结构元素,请使用 offsetstrel

创建对象

说明

SE = strel(nhood) 创建一个具有指定邻域 nhood 的平面结构元素。

您也可以使用语法 SE = strel('arbitrary',nhood) 创建具有指定邻域的平面结构元素。

SE = strel('diamond',r) 创建一个菱形结构元素,其中 r 指定从结构元素原点到菱形各点的距离。

示例

SE = strel('disk',r,n) 创建一个盘形结构元素,其中 r 指定半径,n 指定用于逼近盘形的线条结构元素的数量。当结构元素使用逼近方法时,使用盘形逼近的形态学运算的运行速度要快得多。

SE = strel('octagon',r) 创建一个八边形结构元素,其中 r 指定从结构元素原点到八边形边的距离,沿水平和垂直轴测量。r 必须为 3 的非负倍数。

示例

SE = strel('line',len,deg) 创建一个关于邻域中心对称的线性结构元素,长度约为 len,角度约为 deg

SE = strel('rectangle',[m n]) 创建一个大小为 [m n] 的矩形结构元素。

示例

SE = strel('square',w) 创建一个宽度为 w 个像素的正方形结构元素。

SE = strel('cube',w) 创建一个宽度为 w 个像素的三维立方体结构元素。

SE = strel('cuboid',[m n p]) 创建一个大小为 [m n p] 的三维立方体结构元素。

示例

SE = strel('sphere',r) 创建一个半径为 r 个像素的三维球面结构元素。

兼容性

以下语法仍然有效,但 offsetstrel 是创建这些非平面结构元素形状的首选方法:

  • SE = strel('arbitrary',nhood,h)

  • SE = strel('ball',r,h,n)

以下语法仍然有效,但不推荐使用:

  • SE = strel('pair',offset)

  • SE = strel('periodicline',p,v)

输入参数

全部展开

邻域,指定为任意维度的数值数组。nhood 的所有非零像素都属于形态学运算的邻域。nhood 的中心(或原点)是其中心元素,由 floor((size(nhood) + 1)/2) 给出。

数据类型: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | logical

x-y 平面中结构元素的半径,指定为正整数。

  • 对于盘形,r 是从原点到盘边的距离。

  • 对于菱形,r 是从结构元素原点到菱形各点的距离。

  • 对于八边形,r 是从结构元素原点到八边形边的距离,沿水平和垂直轴测量。r 必须为 3 的倍数。

数据类型: double

用于逼近形状的循环线条结构元素的数量,指定为 0468。当 n 大于 0 时,盘形结构元素由包含 n 个循环线条结构元素的序列逼近。当 n0 时,strel 不进行逼近,结构元素成员包括中心距原点不大于 r 的所有像素。当结构元素使用逼近 (n > 0) 时,使用盘形逼近的形态学运算的运行速度快得多。有时 strel 需要在逼近中使用两个额外的线条结构元素,在这种情况下,使用的分解结构元素的数量为 n+2

n 的值行为
n > 0strel 使用包含 n(有时或为 n+2)个循环线条形结构元素的序列来逼近形状。
n = 0strel 不使用任何逼近。结构元素成员包括其中心距原点不大于 r 的所有像素,并且对应的高度值由 rh 指定的椭圆面公式确定。

数据类型: double

线性结构元素的长度,指定为正数。len 大约是线条两端的结构元素成员中心之间的距离。

数据类型: double

线性结构元素的角度,以度为单位,指定为数值标量。该角度是从水平轴按逆时针方向测量的。

数据类型: double

矩形结构元素的大小,指定为由正整数组成的二元素向量。结构元素有 m 行和 n 列。

数据类型: double

正方形或立方体结构元素的宽度,指定为正整数。

数据类型: double

立方体结构元素的大小,指定为由正整数组成的三元素向量。结构元素具有 m 行、n 列和 p 个平面。

数据类型: double

属性

全部展开

结构元素邻域,指定为逻辑数组。

数据类型: logical

结构元素的维数,指定为非负标量。

数据类型: double

对象函数

imdilate膨胀图像
imerode腐蚀图像
imclose对图像执行形态学闭运算
imopen对图像执行形态学开运算
imbothatBottom-hat filtering
imtophatTop-hat filtering
bwhitmissBinary hit-miss operation
decomposeReturn sequence of decomposed structuring elements
reflectReflect structuring element
translateTranslate structuring element

示例

全部折叠

创建一个 11×11 正方形结构元素。

SE = strel('square', 11)
SE = 
strel is a square shaped structuring element with properties:

      Neighborhood: [11x11 logical]
    Dimensionality: 2

创建一个长度为 10、45 度角的线形结构元素。

SE = strel('line', 10, 45)
SE = 
strel is a line shaped structuring element with properties:

      Neighborhood: [7x7 logical]
    Dimensionality: 2

查看该结构元素。

SE.Neighborhood
ans = 7x7 logical array

   0   0   0   0   0   0   1
   0   0   0   0   0   1   0
   0   0   0   0   1   0   0
   0   0   0   1   0   0   0
   0   0   1   0   0   0   0
   0   1   0   0   0   0   0
   1   0   0   0   0   0   0

创建一个半径为 15 的盘形结构元素。

SE3 = strel('disk', 15)
SE3 = 
strel is a disk shaped structuring element with properties:

      Neighborhood: [29x29 logical]
    Dimensionality: 2

显示盘形结构元素。

figure
imshow(SE3.Neighborhood)

Figure contains an axes. The axes contains an object of type image.

创建一个半径为 15 的三维球形结构元素。

SE = strel('sphere', 15)
SE = 
strel is a sphere shaped structuring element with properties:

      Neighborhood: [31x31x31 logical]
    Dimensionality: 3

显示该结构元素。

figure
isosurface(SE.Neighborhood)

Figure contains an axes. The axes contains an object of type patch.

提示

  • 不使用逼近 (n = 0) 的结构元素不适合计算粒度。

算法

对于除 'arbitrary' 之外的所有形状,都使用统称为结构元素分解的一系列方法构造结构元素。其原理是:通过一些大的结构元素实现的膨胀可以通过用较小的结构元素序列实现的膨胀来更快地计算。例如,要实现 11×11 正方形结构元素的膨胀,可以首先用 1×11 结构元素进行膨胀,然后用 11×1 结构元素进行膨胀。这在理论上可使性能提高 5.5 倍,尽管实际上性能的提升要稍低于此值。用于 'disk' 形状的结构元素分解是一种逼近 - 所有其他分解都是精确的。

兼容性注意事项

全部展开

R2017b 中的行为有变化

参考

[1] van den Boomgard, R, and R. van Balen, "Methods for Fast Morphological Image Transforms Using Bitmapped Images," Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, Vol. 54, Number 3, pp. 252–254, May 1992.

[2] Adams, R., "Radial Decomposition of Discs and Spheres," Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, Vol. 55, Number 5, pp. 325–332, September 1993.

[3] Jones, R., and P. Soille, "Periodic lines: Definition, cascades, and application to granulometrie," Pattern Recognition Letters, Vol. 17, pp. 1057–1063, 1996.

扩展功能

在 R2006a 之前推出