createPlanningTemplate
Create sample implementation for path planning interface
Syntax
Description
createPlanningTemplate
creates a planning template for a subclass
of the nav.StateSpace
class.
The function opens a file in the MATLAB® Editor. Save your custom implementation and ensure the file is available on
the MATLAB path. Alternative syntax:
createPlanningTemplate("StateSpace")
createPlanningTemplate("StateValidator")
creates a template for a
subclass of the nav.StateValidator
class.
createPlanningTemplate("StateSampler")
creates a template for a
subclass of the nav.StateSampler
class.
Examples
Create Custom State Space for Path Planning
This example shows how to use the createPlanningTemplate
function to generate a template for customizing your own state space definition and sampler to use with path planning algorithms. A simple implementation is provided with the template.
Call the create template function. This function generates a class definition file for you to modify for your own implementation.
createPlanningTemplate
Class and Property Definition
The first part of the template specifies the class definition and any properties for the class. Derive from the nav.StateSpace
class. For this example, create a property for the uniform and normal distributions. You can specify any additional user-defined properties here.
classdef MyCustomStateSpace < nav.StateSpace & ... matlabshared.planning.internal.EnforceScalarHandle properties UniformDistribution NormalDistribution % Specify additional properties here end
Save your custom state space class and ensure your file name matches the class name.
Class Constructor
Use the constructor to set the name of the state space, the number of state variables, and define its boundaries. Alternatively, you can add input arguments to the function and pass the variables in when you create an object.
For each state variable, define the
[min max]
values for the state bounds.Call the constructor of the base class.
For this example, you specify the normal and uniform distribution property values using predefined
NormalDistribution
andUniformDistribution
classes.Specify any other user-defined property values here.
methods function obj = MyCustomStateSpace spaceName = "MyCustomStateSpace"; numStateVariables = 3; stateBounds = [-100 100; % [min max] -100 100; -100 100]; obj@nav.StateSpace(spaceName, numStateVariables, stateBounds); obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables); obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables); % User-defined property values here end
Copy Semantics
Specify the copy
method definition. Copy all the values of your user-defined variables into a new object, so copyObj
is a deep copy. The default behavior given in this example creates a new copy of the object with the same name, state bounds, and distributions.
function copyObj = copy(obj) copyObj = feval(class(obj)); copyObj.StateBounds = obj.StateBounds; copyObj.UniformDistribution = obj.UniformDistribution.copy; copyObj.NormalDistribution = obj.NormalDistribution.copy; end
Enforce State Bounds
Specify how to ensure states are always within the state bounds. For this example, the state values get saturated at the minimum or maximum values for the state bounds.
function boundedState = enforceStateBounds(obj, state) nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state"); boundedState = state; boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ... obj.StateBounds(:,2)'); end
Sample Uniformly
Specify the behavior for sampling across a uniform distribution. support multiple syntaxes to constrain the uniform distribution to a nearby state within a certain distance and sample multiple states.
STATE = sampleUniform(OBJ) STATE = sampleUniform(OBJ,NUMSAMPLES) STATE = sampleUniform(OBJ,NEARSTATE,DIST) STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)
For this example, use a validation function to process a varargin
input that handles the varying input arguments.
function state = sampleUniform(obj, varargin) narginchk(1,4); [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:}); obj.UniformDistribution.RandomVariableLimits = stateBounds; state = obj.UniformDistribution.sample(numSamples); end
Sample from Gaussian Distribution
Specify the behavior for sampling across a Gaussian distribution. Support multiple syntaxes for sampling a single state or multiple states.
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV) STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)
function state = sampleGaussian(obj, meanState, stdDev, varargin) narginchk(3,4); [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:}); obj.NormalDistribution.Mean = meanState; obj.NormalDistribution.Covariance = diag(stdDev.^2); state = obj.NormalDistribution.sample(numSamples); state = obj.enforceStateBounds(state); end
Interpolate Between States
Define how to interpolate between two states in your state space. Use an input, fraction
, to determine how to sample along the path between two states. For this example, define a basic linear interpolation method using the difference between states.
function interpState = interpolate(obj, state1, state2, fraction) narginchk(4,4); [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction); stateDiff = state2 - state1; interpState = state1 + fraction' * stateDiff; end
Calculate Distance Between States
Specify how to calculate the distance between two states in your state space. Use the state1
and state2
inputs to define the start and end positions. Both inputs can be a single state (row vector) or multiple states (matrix of row vectors). For this example, calculate the distance based on the Euclidean distance between each pair of state positions.
function dist = distance(obj, state1, state2) narginchk(3,3); nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1"); nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2"); stateDiff = bsxfun(@minus, state2, state1); dist = sqrt( sum( stateDiff.^2, 2 ) ); end
Terminate the methods and class sections.
end end
Save your state space class definition. You can now use the class constructor to create an object for your state space.
Create Custom State Space Validator for Path Planning
This example shows how to use the createPlanningTemplate
function to generate a template for customizing your own state validation class. State validation is used with path planning algorithms to ensure valid paths. The template function provides a basic implementation for example purposes.
Call the create template function. This function generates a class definition file for you to modify for your own implementation. Save this file.
createPlanningTemplate("StateValidator")
Class and Property Definition
The first part of the template specifies the class definition and any properties for the class. Derive from the nav.StateValidator
class. You can specify any additional user-defined properties here.
classdef MyCustomStateValidator < nav.StateValidator & ... matlabshared.planning.internal.EnforceScalarHandle properties % User-defined properties end
Save your custom state validator class and ensure your file name matches the class name.
Class Constructor
Use the constructor to set the name of the state space validator and specify the state space object. Set a default value for the state space if one is not provided. Call the constructor of the base class. Initialize any other user-defined properties. This example uses a default of MyCustomStateSpace
, which was illustrated in the previous example.
methods function obj = MyCustomStateValidator(space) narginchk(0,1) if nargin == 0 space = MyCustomStateSpace; end obj@nav.StateValidator(space); % Initialize user-defined properties end
Copy Semantics
Specify the copy
method definition. Copy all the values of your user-defined variables into a new object, so copyObj
is a deep copy. The default behavior given in this example creates a new copy of the object with the same type.
function copyObj = copy(obj) copyObj = feval(class(obj), obj.StateSpace); end
Check State Validity
Define how a given state is validated. The state
input can either be a single row vector, or a matrix of row vectors for multiple states. Customize this function for any special validation behavior for your state space like collision checking against obstacles.
function isValid = isStateValid(obj, state) narginchk(2,2); nav.internal.validation.validateStateMatrix(state, nan, obj.StateSpace.NumStateVariables, ... "isStateValid", "state"); bounds = obj.StateSpace.StateBounds'; inBounds = state >= bounds(1,:) & state <= bounds(2,:); isValid = all(inBounds, 2); end
Check Motion Validity
Define how to generate the motion between states and determine if it is valid. For this example, use linspace
to evenly interpolate between states and check if these states are valid using isStateValid
. Customize this function to sample between states or consider other analytical methods for determining if a vehicle can move between given states.
function [isValid, lastValid] = isMotionValid(obj, state1, state2) narginchk(3,3); state1 = nav.internal.validation.validateStateVector(state1, ... obj.StateSpace.NumStateVariables, "isMotionValid", "state1"); state2 = nav.internal.validation.validateStateVector(state2, ... obj.StateSpace.NumStateVariables, "isMotionValid", "state2"); if (~obj.isStateValid(state1)) error("statevalidator:StartStateInvalid", "The start state of the motion is invalid."); end % Interpolate at a fixed interval between states and check state validity numInterpPoints = 100; interpStates = obj.StateSpace.interpolate(state1, state2, linspace(0,1,numInterpPoints)); interpValid = obj.isStateValid(interpStates); % Look for invalid states. Set lastValid state to index-1. firstInvalidIdx = find(~interpValid, 1); if isempty(firstInvalidIdx) isValid = true; lastValid = state2; else isValid = false; lastValid = interpStates(firstInvalidIdx-1,:); end end
Terminate the methods and class sections.
end end
Save your state space validator class definition. You can now use the class constructor to create an object for validation of states for a given state space.
Create Class for Implementing Custom State Sampler
This example shows how to use the createPlanningTemplate
function to generate a template for create your own state sampler. State space sampling is used with path planning algorithms to generate valid samples for computing optimal paths. The template function provides a basic implementation for example purposes.
Call the create template function. This function generates a class definition file for you to modify for your own implementation. Save this file.
createPlanningTemplate("StateSampler")
Class and Property Definition
The first part of the template specifies the class definition and any properties for the class. Derive from the nav.StateSampler
class. You can specify any additional user-defined properties here.
classdef MyCustomStateSampler < nav.StateSampler & ... matlabshared.planning.internal.EnforceScalarHandle properties % User-defined properties end
Save your custom state sampler class and ensure your file name matches the class name.
Class Constructor
Use the constructor to set the name of the state sampler and specify the state space object. Set a default value for the state space if one is not provided. This example uses a stateSpaceSE2
as the default state space. Call the constructor of the base class. Initialize any other user-defined properties. The state space object is validated in the StateSampler
base class.
methods function obj = MyCustomStateSampler(space) narginchk(0,1) if nargin == 0 space = stateSpaceSE2; end obj@nav.StateSampler(space); % Initialize user-defined properties end
Copy Semantics
Specify the copy
method definition. Copy all the values of your user-defined variables into a new object, so copyObj
is a deep copy. The default behavior given in this example creates a new copy of the object with the same type.
function copyObj = copy(obj) copyObj = feval(class(obj), obj.StateSampler); % Place your code here end
Generate State Samples
Define how state samples must be generated. Specify the number of samples to generate. If not specified, the default number of samples generated is 1. You can also add additional input arguments to the function. By default, the function computes samples using uniform distribution. You can replace the default function behavior with your custom code.
function states = sample(obj, numSamples) arguments obj numSamples = 1 end % Default behavior: Do uniform sampling states = obj.StateSpace.sampleUniform(numSamples); %-------------------------------------------------------------- % Place your code here to replace default function behavior. %-------------------------------------------------------------- end
Terminate the methods and class sections.
end end
Save your state sampler class definition. You can now use the class constructor to create an object for sampling a given state space.
Version History
Introduced in R2019bR2023b: Class template for creating custom state sampler
You can now use the createPlanningTemplate
function to generate a class template
for creating a custom state sampler. Use the
syntax
createPlanningTemplate("StateSampler")
See Also
Classes
Objects
MATLAB 命令
您点击的链接对应于以下 MATLAB 命令:
请在 MATLAB 命令行窗口中直接输入以执行命令。Web 浏览器不支持 MATLAB 命令。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)