BoundaryCondition Properties
Boundary condition for PDE model
A BoundaryCondition
object specifies the
type of PDE boundary condition on a set of geometry boundaries. A PDEModel
object contains a vector of BoundaryCondition
objects in its BoundaryConditions
property.
Specify boundary conditions for your model using the applyBoundaryCondition
function.
Properties
BCType
— Type of boundary condition
'dirichlet'
| 'neumann'
| 'mixed'
Boundary type, specified as 'dirichlet'
,
'neumann'
, or 'mixed'
.
Example: applyBoundaryCondition(model,'dirichlet','Face',3,'u',0)
Data Types: char
RegionType
— Geometric region type
'Face'
for 3-D geometry | 'Edge'
for 2-D geometry
Geometric region type, specified as 'Face'
for 3-D
geometry or 'Edge'
for 2-D geometry.
Example: applyBoundaryCondition(model,'dirichlet','Face',3,'u',0)
Data Types: char
| string
RegionID
— Geometric region ID
vector of positive integers
Geometric region ID, specified as a vector of positive integers. Find the
region IDs by using pdegplot
with the
'FaceLabels'
(3-D) or 'EdgeLabels'
(2-D) value set to 'on'
.
Example: applyBoundaryCondition(model,'dirichlet','Face',3:6,'u',0)
Data Types: double
r
— Dirichlet condition h*u = r
zeros(N,1)
(default) | vector with N elements | function handle
Dirichlet condition h*u = r
, specified as a vector with
N elements or a function handle. N
is the number of PDEs in the system. For the syntax of the function handle
form of r
, see Nonconstant Boundary Conditions.
Example: 'r',[0;4;-1]
Data Types: double
| function_handle
Complex Number Support: Yes
h
— Dirichlet condition h*u = r
eye(
N)
(default) | N-by-N matrix | vector with N^2 elements | function handle
Dirichlet condition h*u = r
, specified as an
N-by-N matrix, a vector with
N^2 elements, or a function handle.
N is the number of PDEs in the system. For the syntax
of the function handle form of h
, see Nonconstant Boundary Conditions.
Example: 'h',[2,1;1,2]
Data Types: double
| function_handle
Complex Number Support: Yes
g
— Generalized Neumann condition n·(c×
∇u) + qu = g
zeros(
N,1)
(default) | vector with N elements | function handle
Generalized Neumann condition n·(c×
∇u) + qu =
g
, specified as a vector with N elements or
a function handle. N is the number of PDEs in the system.
For scalar PDEs, the generalized Neumann condition is n·(c
∇u) + qu =
g
. For the syntax of the function handle form of
g
, see Nonconstant Boundary Conditions.
Example: 'g',[3;2;-1]
Data Types: double
| function_handle
Complex Number Support: Yes
q
— Generalized Neumann condition n·(c×
∇u) + qu = g
zeros(
N)
(default) | N-by-N matrix | vector with N^2
elements | function handle
Generalized Neumann condition n·(c×
∇u) + qu =
g
, specified as an
N-by-N matrix, a vector with
N^2
elements, or a function
handle. N is the number of PDEs in the system. For the
syntax of the function handle form of q
, see Nonconstant Boundary Conditions.
Example: 'q',eye(3)
Data Types: double
| function_handle
Complex Number Support: Yes
u
— Dirichlet conditions
zeros(
N,1)
(default) | vector of up to N elements | function handle
Dirichlet conditions, specified as a vector of up to N
elements or as a function handle. If u
has less than
N elements, then you must also use
EquationIndex
. The u
and
EquationIndex
arguments must have the same length. If
u
has N elements, then specifying
EquationIndex
is optional.
For the syntax of the function handle form of u
, see
Nonconstant Boundary Conditions.
Example: applyBoundaryCondition(model,'dirichlet','Face',[2,4,11],'u',0)
Data Types: double
Complex Number Support: Yes
EquationIndex
— Index of the known u
components
1:
N (default) | vector of integers with entries from 1
to
N
Index of the known u
components, specified as a vector
of integers with entries from 1
to N.
EquationIndex
and u
must have the
same length.
Example: applyBoundaryCondition(model,'mixed','Face',[2,4,11],'u',[3,-1],'EquationIndex',[2,3])
Data Types: double
Vectorized
— Vectorized function evaluation
'off'
(default) | 'on'
Vectorized function evaluation, specified as 'on'
or
'off'
. This evaluation applies when you pass a
function handle as an argument. To save time in function handle evaluation,
specify 'on'
, assuming that your function handle computes
in a vectorized fashion. See Vectorization. For details of
this evaluation, see Nonconstant Boundary Conditions.
Example: applyBoundaryCondition(model,'dirichlet','Face',[2,4,11],'u',@ucalculator,'Vectorized','on')
Data Types: char
Version History
Introduced in R2015a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)