evaluatePrincipalStrain
Evaluate principal strain at nodal locations
Description
evaluates principal strain at nodal locations using strain values from
pStrain
= evaluatePrincipalStrain(structuralresults
)structuralresults
. For transient and frequency response
structural analysis, evaluatePrincipalStrain
evaluates principal
strain for all time- or frequency-steps, respectively.
Examples
Octahedral Shear Strain for Bimetallic Cable Under Tension
Analyze a bimetallic cable under tension, and compute octahedral shear strain.
Create and plot a geometry representing a bimetallic cable.
gm = multicylinder([0.01,0.015],0.05); pdegplot(gm,FaceLabels="on", ... CellLabels="on", ... FaceAlpha=0.5)
Create an femodel
object for static structural analysis and include the geometry into the model.
model = femodel(AnalysisType="structuralStatic", ... Geometry=gm);
Specify Young's modulus and Poisson's ratio for each metal.
model.MaterialProperties(1) = ... materialProperties(YoungsModulus=110E9, ... PoissonsRatio=0.28); model.MaterialProperties(2) = ... materialProperties(YoungsModulus=210E9, ... PoissonsRatio=0.3);
Specify that faces 1 and 4 are fixed boundaries.
model.FaceBC([1 4]) = faceBC(Constraint="fixed");
Specify the surface traction for faces 2 and 5.
model.FaceLoad([2 5]) = faceLoad(SurfaceTraction=[0;0;100]);
Generate a mesh and solve the problem.
model = generateMesh(model); R = solve(model)
R = StaticStructuralResults with properties: Displacement: [1x1 FEStruct] Strain: [1x1 FEStruct] Stress: [1x1 FEStruct] VonMisesStress: [23098x1 double] Mesh: [1x1 FEMesh]
Evaluate the principal strain at nodal locations.
pStrain = evaluatePrincipalStrain(R);
Use the principal strain to evaluate the first and second invariant of strain.
I1 = pStrain.e1 + pStrain.e2 + pStrain.e3; I2 = pStrain.e1.*pStrain.e2 + ... pStrain.e2.*pStrain.e3 + ... pStrain.e3.*pStrain.e1; tauOct = sqrt(2*(I1.^2 -3*I2))/3; pdeplot3D(R.Mesh,ColorMapData=tauOct)
Principal Strain for 3-D Structural Dynamic Problem
Evaluate the principal strain and octahedral shear strain in a beam under a harmonic excitation.
Create and plot a beam geometry.
gm = multicuboid(0.06,0.005,0.01);
pdegplot(gm,FaceLabels="on",FaceAlpha=0.5)
view(50,20)
Create an femodel
object for transient structural analysis and include the geometry into the model.
model = femodel(AnalysisType="structuralTransient", ... Geometry=gm);
Specify Young's modulus, Poisson's ratio, and the mass density of the material.
model.MaterialProperties = ... materialProperties(YoungsModulus=210E9, ... PoissonsRatio=0.3, ... MassDensity=7800);
Fix one end of the beam.
model.FaceBC(5) = faceBC(Constraint="fixed");
Apply a sinusoidal displacement along the y-direction on the end opposite the fixed end of the beam.
yDisplacemenmtFunc = ...
@(location, state) ones(size(location.y))*1E-4*sin(50*state.time);
model.FaceBC(3) = faceBC(YDisplacement=yDisplacemenmtFunc);
Generate a mesh.
model = generateMesh(model,Hmax=0.01);
Specify the zero initial displacement and velocity.
model.CellIC = cellIC(Displacement=[0;0;0],Velocity=[0;0;0]);
Solve the problem.
tlist = 0:0.002:0.2; R = solve(model,tlist);
Evaluate the principal strain in the beam.
pStrain = evaluatePrincipalStrain(R);
Use the principal strain to evaluate the first and second invariants.
I1 = pStrain.e1 + pStrain.e2 + pStrain.e3; I2 = pStrain.e1.*pStrain.e2 + ... pStrain.e2.*pStrain.e3 + ... pStrain.e3.*pStrain.e1;
Use the stress invariants to compute the octahedral shear strain.
tauOct = sqrt(2*(I1.^2 -3*I2))/3;
Plot the results.
figure pdeplot3D(R.Mesh,ColorMapData=tauOct(:,end))
Input Arguments
structuralresults
— Solution of structural analysis problem
StaticStructuralResults
object | TransientStructuralResults
object | FrequencyStructuralResults
object
Solution of the structural analysis problem, specified as a StaticStructuralResults
, TransientStructuralResults
, or FrequencyStructuralResults
object. Create
structuralresults
by using the solve
function.
Output Arguments
pStrain
— Principal strain at nodal locations
structure array
Principal strain at the nodal locations, returned as a structure array.
Version History
Introduced in R2017bR2019b: Support for frequency response structural problems
For frequency response structural problems,
evaluatePrincipalStrain
evaluates principal strain for all
frequency-steps.
R2018a: Support for transient structural problems
For transient structural problems, evaluatePrincipalStrain
evaluates principal strain for all time-steps.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)