Main Content

Enforce Passivity Constraints for Quadruple-Tank System

This example shows how to enforce passivity constraints for controlling quadruple tank using the Passivity Enforcement block.

Overview

You can write the dynamics for a quadruple tank system as follows [1].

x˙=f(x)+g(x)u

Here, the vector x denotes the heights of the four tanks and the vector u denotes the flows of the two pumps. The dynamics are implemented in the script stateFcnQuadrupleTank.m.

The control objective is to select the flow of the pumps u such that (x,u) moves towards the equilibrium (xs,us).

Specify the initial conditions of the states.

x0 = [25;16;20;21];

Specify the equilibrium point for the quadruple-tank model.

xs = [28.1459,17.8230,18.3991,25.1192]';
us = [37,38]';

Design PID Controllers

Before applying constraints, design PID controllers for the quadruple-tank model. The passivityTank model contains two PID controllers. For information on tuning PID controllers in Simulink® models, see Introduction to Model-Based PID Tuning in Simulink.

Disable the passivity constraint enforcement and open the model.

constrained = 0;
mdl = 'passivityTank';
open_system(mdl)

Simulate the PID controllers and plot the performance.

% Simulate the model.
out = sim(mdl);
% Extract trajectories.
logsout = out.logsout;
% Plot trajectories of state error.
e = logsout.getElement('states_error');       
e_vector = e.Values.Data(:,:)';
plot(e.Values.time,e_vector)
ylim([-6 6])
grid on
legend('e1','e2','e3','e4','location','NorthEast')
title('State Error')

Figure contains an axes object. The axes object with title State Error contains 4 objects of type line. These objects represent e1, e2, e3, e4.

The errors go to zero and the closed loop system is stable.

Passivity Constraint

To define the passivity constraint, first define the state error vector:

e=x-xs.

Define the storage function as V=12(e32+e42) and take the derivative of V to obtain the following relationship [1].

V˙upTyp

This means that, the system is passive from up=[u1;u2]-us to yp=[e4;e3].

The Passivity Enforcement block accepts passivity constraint in the forms up=fp(x)+gp(x)u and yp=hp(x). In this application,

fp(x)=-us, gp(x)=[1001], and hp(x)=[x4-xs,4x3-xs,3].

Simulate Controller with Passivity Constraint

To view the constraint implementation, open the Constraint > Constrained subsystem.

Enable the passivity constraint enforcement.

constrained = 1;

Run the model and plot the simulation results.

% Simulate the model.
out = sim(mdl);

% Extract trajectories.
logsout = out.logsout;

% Plot trajectories of state error.
e = logsout.getElement('states_error');       
e_vector = e.Values.Data(:,:)';
plot(e.Values.time,e_vector)
ylim([-6 6])
grid on
legend('e1','e2','e3','e4','location','NorthEast')
title('State Error')

Figure contains an axes object. The axes object with title State Error contains 4 objects of type line. These objects represent e1, e2, e3, e4.

The errors go to zero and the closed loop system is stable. When you enforce passivity constraint, the errors have smaller magnitudes and smoother transient behavior.

% Plot trajectories of control inputs
u = logsout.getElement('u*');       
u_vector = u.Values.Data(:,:)';
plot(u.Values.time,u_vector)
grid on
legend('u1','u2','location','NorthEast')
title('Control Input')

Figure contains an axes object. The axes object with title Control Input contains 2 objects of type line. These objects represent u1, u2.

The control inputs also converge to the specified equilibrium.

Close the model.

bdclose(mdl)

References

[1] Raff, Tobias, Christian Ebenbauer, and Frank Allgöwer. “Nonlinear Model Predictive Control: A Passivity-Based Approach.” In Assessment and Future Directions of Nonlinear Model Predictive Control, edited by Rolf Findeisen, Frank Allgöwer, and Lorenz T. Biegler, 358:151-162. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-72699-9_12.

See Also

Related Topics