Train an error-correcting output codes (ECOC) model using SVM binary learners and create a coder configurer for the model. Use the properties of the coder configurer to specify coder attributes of the ECOC model parameters. Use the object function of the coder configurer to generate C code that predicts labels for new predictor data. Then retrain the model using different settings, and update parameters in the generated code without regenerating the code.
Train Model
Load Fisher's iris data set.
Create an SVM binary learner template to use a Gaussian kernel function and to standardize predictor data.
Train a multiclass ECOC model using the template t
.
Mdl
is a ClassificationECOC
object.
Create Coder Configurer
Create a coder configurer for the ClassificationECOC
model by using learnerCoderConfigurer
. Specify the predictor data X
. The learnerCoderConfigurer
function uses the input X
to configure the coder attributes of the predict
function input. Also, set the number of outputs to 2 so that the generated code returns the first two outputs of the predict
function, which are the predicted labels and negated average binary losses.
configurer =
ClassificationECOCCoderConfigurer with properties:
Update Inputs:
BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
Prior: [1x1 LearnerCoderInput]
Cost: [1x1 LearnerCoderInput]
Predict Inputs:
X: [1x1 LearnerCoderInput]
Code Generation Parameters:
NumOutputs: 2
OutputFileName: 'ClassificationECOCModel'
configurer
is a ClassificationECOCCoderConfigurer
object, which is a coder configurer of a ClassificationECOC
object. The display shows the tunable input arguments of predict
and update
: X
, BinaryLearners
, Prior
, and Cost
.
Specify Coder Attributes of Parameters
Specify the coder attributes of predict
arguments (predictor data and the name-value pair arguments 'Decoding'
and 'BinaryLoss'
) and update
arguments (support vectors of the SVM learners) so that you can use these arguments as the input arguments of predict
and update
in the generated code.
First, specify the coder attributes of X
so that the generated code accepts any number of observations. Modify the SizeVector
and VariableDimensions
attributes. The SizeVector
attribute specifies the upper bound of the predictor data size, and the VariableDimensions
attribute specifies whether each dimension of the predictor data has a variable size or fixed size.
The size of the first dimension is the number of observations. In this case, the code specifies that the upper bound of the size is Inf
and the size is variable, meaning that X
can have any number of observations. This specification is convenient if you do not know the number of observations when generating code.
The size of the second dimension is the number of predictor variables. This value must be fixed for a machine learning model. X
contains 4 predictors, so the second value of the SizeVector
attribute must be 4 and the second value of the VariableDimensions
attribute must be false
.
Next, modify the coder attributes of BinaryLoss
and Decoding
to use the 'BinaryLoss'
and 'Decoding'
name-value pair arguments in the generated code. Display the coder attributes of BinaryLoss
.
ans =
EnumeratedInput with properties:
Value: 'hinge'
SelectedOption: 'Built-in'
BuiltInOptions: {'hamming' 'linear' 'quadratic' 'exponential' 'binodeviance' 'hinge' 'logit'}
IsConstant: 1
Tunability: 0
To use a nondefault value in the generated code, you must specify the value before generating the code. Specify the Value
attribute of BinaryLoss
as 'exponential'
.
ans =
EnumeratedInput with properties:
Value: 'exponential'
SelectedOption: 'Built-in'
BuiltInOptions: {'hamming' 'linear' 'quadratic' 'exponential' 'binodeviance' 'hinge' 'logit'}
IsConstant: 1
Tunability: 1
If you modify attribute values when Tunability
is false
(logical 0), the software sets the Tunability
to true
(logical 1).
Display the coder attributes of Decoding
.
ans =
EnumeratedInput with properties:
Value: 'lossweighted'
SelectedOption: 'Built-in'
BuiltInOptions: {'lossweighted' 'lossbased'}
IsConstant: 1
Tunability: 0
Specify the IsConstant
attribute of Decoding
as false
so that you can use all available values in BuiltInOptions
in the generated code.
ans =
EnumeratedInput with properties:
Value: [1x1 LearnerCoderInput]
SelectedOption: 'NonConstant'
BuiltInOptions: {'lossweighted' 'lossbased'}
IsConstant: 0
Tunability: 1
The software changes the Value
attribute of Decoding
to a LearnerCoderInput
object so that you can use both 'lossweighted'
and 'lossbased
' as the value of 'Decoding'
. Also, the software sets the SelectedOption
to 'NonConstant'
and the Tunability
to true
.
Finally, modify the coder attributes of SupportVectors
in BinaryLearners
. Display the coder attributes of SupportVectors
.
ans =
LearnerCoderInput with properties:
SizeVector: [54 4]
VariableDimensions: [1 0]
DataType: 'double'
Tunability: 1
The default value of VariableDimensions
is [true false]
because each learner has a different number of support vectors. If you retrain the ECOC model using new data or different settings, the number of support vectors in the SVM learners can vary. Therefore, increase the upper bound of the number of support vectors.
SizeVector attribute for Alpha has been modified to satisfy configuration constraints.
SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.
If you modify the coder attributes of SupportVectors
, then the software modifies the coder attributes of Alpha
and SupportVectorLabels
to satisfy configuration constraints. If the modification of the coder attributes of one parameter requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters.
Display the coder configurer.
configurer =
ClassificationECOCCoderConfigurer with properties:
Update Inputs:
BinaryLearners: [1x1 ClassificationSVMCoderConfigurer]
Prior: [1x1 LearnerCoderInput]
Cost: [1x1 LearnerCoderInput]
Predict Inputs:
X: [1x1 LearnerCoderInput]
BinaryLoss: [1x1 EnumeratedInput]
Decoding: [1x1 EnumeratedInput]
Code Generation Parameters:
NumOutputs: 2
OutputFileName: 'ClassificationECOCModel'
The display now includes BinaryLoss
and Decoding
as well.
Generate Code
To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use mex
-setup
to view and change the default compiler. For more details, see Change Default Compiler.
Generate code for the predict
and update
functions of the ECOC classification model (Mdl
).
generateCode creates these files in output folder:
'initialize.m', 'predict.m', 'update.m', 'ClassificationECOCModel.mat'
Code generation successful.
The generateCode
function completes these actions:
Generate the MATLAB files required to generate code, including the two entry-point functions predict.m
and update.m
for the predict
and update
functions of Mdl
, respectively.
Create a MEX function named ClassificationECOCModel
for the two entry-point functions.
Create the code for the MEX function in the codegen\mex\ClassificationECOCModel
folder.
Copy the MEX function to the current folder.
Verify Generated Code
Pass some predictor data to verify whether the predict
function of Mdl
and the predict
function in the MEX function return the same labels. To call an entry-point function in a MEX function that has more than one entry point, specify the function name as the first input argument. Because you specified 'Decoding'
as a tunable input argument by changing the IsConstant
attribute before generating the code, you also need to specify it in the call to the MEX function, even though 'lossweighted'
is the default value of 'Decoding'
.
Compare label
to label_mex
by using isequal
.
isequal
returns logical 1 (true
) if all the inputs are equal. The comparison confirms that the predict
function of Mdl
and the predict
function in the MEX function return the same labels.
NegLoss_mex
might include round-off differences compared to NegLoss
. In this case, compare NegLoss_mex
to NegLoss
, allowing a small tolerance.
ans =
0x1 empty double column vector
The comparison confirms that NegLoss
and NegLoss_mex
are equal within the tolerance 1e–8
.
Retrain Model and Update Parameters in Generated Code
Retrain the model using a different setting. Specify 'KernelScale'
as 'auto'
so that the software selects an appropriate scale factor using a heuristic procedure.
Extract parameters to update by using validatedUpdateInputs
. This function detects the modified model parameters in retrainedMdl
and validates whether the modified parameter values satisfy the coder attributes of the parameters.
Update parameters in the generated code.
Verify Generated Code
Compare the outputs from the predict
function of retrainedMdl
to the outputs from the predict
function in the updated MEX function.
ans =
0x1 empty double column vector
The comparison confirms that label
and label_mex
are equal, and NegLoss
and NegLoss_mex
are equal within the tolerance.