ClassificationSVMCoderConfigurer
Coder configurer for support vector machine (SVM) for one-class and binary classification
Description
A ClassificationSVMCoderConfigurer object is a coder configurer
of an SVM classification model (ClassificationSVM or CompactClassificationSVM).
A coder configurer offers convenient features to configure code generation options, generate C/C++ code, and update model parameters in the generated code.
Configure code generation options and specify the coder attributes of SVM model parameters by using object properties.
Generate C/C++ code for the
predictandupdatefunctions of the SVM classification model by usinggenerateCode. Generating C/C++ code requires MATLAB® Coder™.Update model parameters in the generated C/C++ code without having to regenerate the code. This feature reduces the effort required to regenerate, redeploy, and reverify C/C++ code when you retrain the SVM model with new data or settings. Before updating model parameters, use
validatedUpdateInputsto validate and extract the model parameters to update.
This flow chart shows the code generation workflow using a coder configurer.

For the code generation usage notes and limitations of an SVM classification model, see
the Code Generation sections of CompactClassificationSVM, predict, and update.
Creation
After training an SVM classification model by using fitcsvm, create a coder configurer for the model by using learnerCoderConfigurer. Use the properties of a coder configurer to specify the
coder attributes of predict and update arguments. Then,
use generateCode to generate C/C++ code based on the specified coder
attributes.
Properties
predict Arguments
The properties listed in this section specify the coder attributes of the predict function arguments in the generated code.
Coder attributes of predictor data to pass to the generated C/C++ code for the
predict function of the SVM classification
model, specified as a LearnerCoderInput object.
When you create a coder configurer by using the learnerCoderConfigurer function, the input argument X determines
the default values of the LearnerCoderInput coder attributes:
SizeVector— The default value is the array size of the inputX.VariableDimensions— This value is[0 0](default) or[1 0].[0 0]indicates that the array size is fixed as specified inSizeVector.[1 0]indicates that the array has variable-size rows and fixed-size columns. In this case, the first value ofSizeVectoris the upper bound for the number of rows, and the second value ofSizeVectoris the number of columns.
DataType— This value issingleordouble. The default data type depends on the data type of the inputX.Tunability— This value must betrue, meaning thatpredictin the generated C/C++ code always includes predictor data as an input.
You can modify the coder attributes by using dot notation. For example, to generate C/C++ code
that accepts predictor data with 100 observations of three predictor variables, specify
these coder attributes of X for the coder configurer
configurer:
configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [0 0];[0
0] indicates that the first and second dimensions of X
(number of observations and number of predictor variables, respectively) have fixed
sizes.To allow the generated C/C++ code to accept predictor data with up to 100 observations,
specify these coder attributes of
X:
configurer.X.SizeVector = [100 3];
configurer.X.DataType = 'double';
configurer.X.VariableDimensions = [1 0];[1
0] indicates that the first dimension of X (number of
observations) has a variable size and the second dimension of X (number
of predictor variables) has a fixed size. The specified number of observations, 100 in this
example, becomes the maximum allowed number of observations in the generated C/C++ code. To
allow any number of observations, specify the bound as Inf.Number of output arguments to return from the generated C/C++ code for the
predict function of the SVM classification
model, specified as 1 or 2.
The output arguments of predict are label
(predicted class labels) and score
(scores or posterior probabilities) in the order of listed. predict
in the generated C/C++ code returns the first n outputs of the
predict function, where
n is the NumOutputs value.
After creating the coder configurer configurer, you can
specify the number of outputs by using dot
notation.
configurer.NumOutputs = 2;
The NumOutputs property is equivalent to the
'-nargout' compiler option of codegen (MATLAB Coder). This option specifies the number of output arguments in the
entry-point function of code generation. The object function generateCode generates two entry-point
functions—predict.m and update.m for the
predict and update
functions of an SVM classification model, respectively—and generates C/C++ code for
the two entry-point functions. The specified value for the
NumOutputs property corresponds to the number of output
arguments in the entry-point function predict.m.
Data Types: double
update Arguments
The properties listed in this section specify the coder
attributes of the update function
arguments in the generated code. The update function takes a trained model
and new model parameters as input arguments, and returns an updated version of the model that
contains the new parameters. To enable updating the parameters in the generated code, you need
to specify the coder attributes of the parameters before generating code. Use a LearnerCoderInput
object to specify the coder attributes of each parameter. The default attribute values are based
on the model parameters in the input argument Mdl of learnerCoderConfigurer.
Coder attributes of the trained classifier coefficients (Alpha of an SVM classification
model), specified as a LearnerCoderInput object.
The default attribute values of the
LearnerCoderInput object are based on the input argument
Mdl of learnerCoderConfigurer:
SizeVector— The default value is[s,1], wheresis the number of support vectors inMdl.VariableDimensions— This value is[0 0](default) or[1 0].[0 0]indicates that the array size is fixed as specified inSizeVector.[1 0]indicates that the array has variable-size rows and fixed-size columns. In this case, the first value ofSizeVectoris the upper bound for the number of rows, and the second value ofSizeVectoris the number of columns.
DataType— This value is'single'or'double'. The default data type is consistent with the data type of the training data you use to trainMdl.Tunability— If you train a model with a linear kernel function, and the model stores the linear predictor coefficients (Beta) without the support vectors and related values, then this value must befalse. Otherwise, this value must betrue.
Coder attributes of the linear predictor coefficients (Beta of an SVM classification
model), specified as a LearnerCoderInput object.
The default attribute values of the
LearnerCoderInput object are based on the input argument
Mdl of learnerCoderConfigurer:
SizeVector— This value must be[p 1], wherepis the number of predictors inMdl.VariableDimensions— This value must be[0 0], indicating that the array size is fixed as specified inSizeVector.DataType— This value is'single'or'double'. The default data type is consistent with the data type of the training data you use to trainMdl.Tunability— If you train a model with a linear kernel function, and the model stores the linear predictor coefficients (Beta) without the support vectors and related values, then this value must betrue. Otherwise, this value must befalse.
Coder attributes of the bias term (Bias of an SVM classification
model), specified as a LearnerCoderInput object.
The default attribute values of the
LearnerCoderInput object are based on the input argument
Mdl of learnerCoderConfigurer:
SizeVector— This value must be[1 1].VariableDimensions— This value must be[0 0], indicating that the array size is fixed as specified inSizeVector.DataType— This value is'single'or'double'. The default data type is consistent with the data type of the training data you use to trainMdl.Tunability— This value must betrue.
Coder attributes of the misclassification cost (Cost of an SVM classification
model), specified as a LearnerCoderInput object.
The default attribute values of the
LearnerCoderInput object are based on the input argument
Mdl of learnerCoderConfigurer:
SizeVector— For binary classification, this value must be[2 2]. For one-class classification, this value must be[1 1].VariableDimensions— This value must be[0 0], indicating that the array size is fixed as specified inSizeVector.DataType— This value is'single'or'double'. The default data type is consistent with the data type of the training data you use to trainMdl.Tunability— For binary classification, the default value istrue. For one-class classification, this value must befalse.
Coder attributes of the predictor means (Mu of an SVM classification
model), specified as a LearnerCoderInput object.
The default attribute values of the
LearnerCoderInput object are based on the input argument
Mdl of learnerCoderConfigurer:
SizeVector— If you trainMdlusing standardized predictor data by specifying, this value must be'Standardize',true[1,p], wherepis the number of predictors inMdl. Otherwise, this value must be[0,0].VariableDimensions— This value must be[0 0], indicating that the array size is fixed as specified inSizeVector.DataType— This value is'single'or'double'. The default data type is consistent with the data type of the training data you use to trainMdl.Tunability— If you trainMdlusing standardized predictor data by specifying, the default value is'Standardize',truetrue. Otherwise, this value must befalse.
Coder attributes of the prior probabilities (Prior of an SVM classification
model), specified as a LearnerCoderInput object.
The default attribute values of the
LearnerCoderInput object are based on the input argument
Mdl of learnerCoderConfigurer:
SizeVector— For binary classification, this value must be[1 2]. For one-class classification, this value must be[1 1].VariableDimensions— This value must be[0 0], indicating that the array size is fixed as specified inSizeVector.DataType— This value is'single'or'double'. The default data type is consistent with the data type of the training data you use to trainMdl.Tunability— For binary classification, the default value istrue. For one-class classification, this value must befalse.
Coder attributes of the kernel scale parameter (KernelParameters.Scale of an SVM classification
model), specified as a LearnerCoderInput object.
The default attribute values of the
LearnerCoderInput object are based on the input argument
Mdl of learnerCoderConfigurer:
SizeVector— This value must be[1 1].VariableDimensions— This value must be[0 0], indicating that the array size is fixed as specified inSizeVector.DataType— This value is'single'or'double'. The default data type is consistent with the data type of the training data you use to trainMdl.Tunability— The default value istrue.
Coder attributes of the predictor standard deviations (Sigma of an SVM classification
model), specified as a LearnerCoderInput object.
The default attribute values of the
LearnerCoderInput object are based on the input argument
Mdl of learnerCoderConfigurer:
SizeVector— If you trainMdlusing standardized predictor data by specifying, this value must be'Standardize',true[1,p], wherepis the number of predictors inMdl. Otherwise, this value must be[0,0].VariableDimensions— This value must be[0 0], indicating that the array size is fixed as specified inSizeVector.DataType— This value is'single'or'double'. The default data type is consistent with the data type of the training data you use to trainMdl.Tunability— If you trainMdlusing standardized predictor data by specifying, the default value is'Standardize',truetrue. Otherwise, this value must befalse.
Coder attributes of the support vector class labels (SupportVectorLabels of an SVM classification model), specified as a
LearnerCoderInput object.
The default attribute values of the
LearnerCoderInput object are based on the input argument
Mdl of learnerCoderConfigurer:
SizeVector— The default value is[s,1], wheresis the number of support vectors inMdl.VariableDimensions— This value is[0 0](default) or[1 0].[0 0]indicates that the array size is fixed as specified inSizeVector.[1 0]indicates that the array has variable-size rows and fixed-size columns. In this case, the first value ofSizeVectoris the upper bound for the number of rows, and the second value ofSizeVectoris the number of columns.
DataType— This value is'single'or'double'. The default data type is consistent with the data type of the training data you use to trainMdl.Tunability— If you train a model with a linear kernel function, and the model stores the linear predictor coefficients (Beta) without the support vectors and related values, then this value must befalse. Otherwise, this value must betrue.
Coder attributes of the support vectors (SupportVectors of an
SVM classification model), specified as a LearnerCoderInput object.
The default attribute values of the
LearnerCoderInput object are based on the input argument
Mdl of learnerCoderConfigurer:
SizeVector— The default value is[s,p], wheresis the number of support vectors, andpis the number of predictors inMdl.VariableDimensions— This value is[0 0](default) or[1 0].[0 0]indicates that the array size is fixed as specified inSizeVector.[1 0]indicates that the array has variable-size rows and fixed-size columns. In this case, the first value ofSizeVectoris the upper bound for the number of rows, and the second value ofSizeVectoris the number of columns.
DataType— This value is'single'or'double'. The default data type is consistent with the data type of the training data you use to trainMdl.Tunability— If you train a model with a linear kernel function, and the model stores the linear predictor coefficients (Beta) without the support vectors and related values, then this value must befalse. Otherwise, this value must betrue.
Other Configurer Options
File name of the generated C/C++ code, specified as a character vector.
The object function generateCode of
ClassificationSVMCoderConfigurer generates C/C++ code using this file name.
The file name must not contain spaces because they can lead to code generation failures in certain operating system configurations. Also, the name must be a valid MATLAB function name.
After creating the coder configurer configurer, you can specify the file
name by using dot
notation.
configurer.OutputFileName = 'myModel';Data Types: char
Verbosity level, specified as true (logical 1) or
false (logical 0). The verbosity level controls the display of
notification messages at the command line.
| Value | Description |
|---|---|
true (logical 1) | The software displays notification messages when your changes to the coder attributes of a parameter result in changes for other dependent parameters. |
false (logical
0) | The software does not display notification messages. |
To enable updating machine learning model parameters in the generated code, you need to configure the coder attributes of the parameters before generating code. The coder attributes of parameters are dependent on each other, so the software stores the dependencies as configuration constraints. If you modify the coder attributes of a parameter by using a coder configurer, and the modification requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters. The verbosity level determines whether or not the software displays notification messages for these subsequent changes.
After creating the coder configurer configurer, you can modify the
verbosity level by using dot
notation.
configurer.Verbose = false;
Data Types: logical
Options for Code Generation Customization
To customize the code generation workflow, use the generateFiles function and the following three properties with codegen (MATLAB Coder), instead of using the generateCode function.
After generating the two entry-point function files (predict.m and
update.m) by using the generateFiles
function, you can modify these files according to your code generation workflow. For
example, you can modify the predict.m file to include data preprocessing,
or you can add these entry-point functions to another code generation project. Then, you can
generate C/C++ code by using the codegen (MATLAB Coder) function and the
codegen arguments appropriate for the modified entry-point
functions or code generation project. Use the three properties described in this section as
a starting point to set the codegen arguments.
This property is read-only.
codegen (MATLAB Coder) arguments, specified as a cell array.
This property enables you to customize the code generation workflow. Use the generateCode function if you do not need to customize your
workflow.
Instead of using generateCode with the coder configurer configurer,
you can generate C/C++ code as
follows:
generateFiles(configurer)
cgArgs = configurer.CodeGenerationArguments;
codegen(cgArgs{:})cgArgs accordingly
before calling codegen.If you modify other properties of configurer, the software updates
the CodeGenerationArguments property accordingly.
Data Types: cell
This property is read-only.
Input argument of the entry-point function predict.m for code generation,
specified as a cell array of a coder.PrimitiveType (MATLAB Coder) object. The
coder.PrimitiveType object includes the coder attributes of the
predictor data stored in the X property.
If you modify the coder attributes of the predictor data, then the software updates
the coder.PrimitiveType object accordingly.
The coder.PrimitiveType object in PredictInputs
is equivalent to configurer.CodeGenerationArguments{6} for the coder
configurer configurer.
Data Types: cell
This property is read-only.
List of the tunable input arguments of the entry-point function update.m
for code generation, specified as a cell array of a structure including coder.PrimitiveType (MATLAB Coder) objects. Each coder.PrimitiveType
object includes the coder attributes of a tunable machine learning model
parameter.
If you modify the coder attributes of a model parameter by using the coder configurer
properties (update Arguments properties), then the software
updates the corresponding coder.PrimitiveType object accordingly. If
you specify the Tunability attribute of a machine learning model
parameter as false, then the software removes the corresponding
coder.PrimitiveType object from the
UpdateInputs list.
The structure in UpdateInputs is equivalent to
configurer.CodeGenerationArguments{3} for the coder configurer
configurer.
Data Types: cell
Object Functions
generateCode | Generate C/C++ code using coder configurer |
generateFiles | Generate MATLAB files for code generation using coder configurer |
validatedUpdateInputs | Validate and extract machine learning model parameters to update |
Examples
Train a machine learning model, and then generate code for the predict and update functions of the model by using a coder configurer.
Load the ionosphere data set and train a binary SVM classification model.
load ionosphere
Mdl = fitcsvm(X,Y);Mdl is a ClassificationSVM object, which is a linear SVM model. The predictor coefficients in a linear SVM model provide enough information to predict labels for new observations. Removing the support vectors reduces memory usage in the generated code. Remove the support vectors from the linear SVM model by using the discardSupportVectors function.
Mdl = discardSupportVectors(Mdl);
Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer. Specify the predictor data X. The learnerCoderConfigurer function uses the input X to configure the coder attributes of the predict function input.
configurer = learnerCoderConfigurer(Mdl,X)
configurer =
ClassificationSVMCoderConfigurer with properties:
Update Inputs:
Beta: [1×1 LearnerCoderInput]
Scale: [1×1 LearnerCoderInput]
Bias: [1×1 LearnerCoderInput]
Prior: [1×1 LearnerCoderInput]
Cost: [1×1 LearnerCoderInput]
Predict Inputs:
X: [1×1 LearnerCoderInput]
Code Generation Parameters:
NumOutputs: 1
OutputFileName: 'ClassificationSVMModel'
Properties, Methods
configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a ClassificationSVM object.
To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and change the default compiler. For more details, see Change Default Compiler.
Generate code for the predict and update functions of the SVM classification model (Mdl) with default settings.
generateCode(configurer)
generateCode creates these files in output folder: 'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat' Code generation successful.
The generateCode function completes these actions:
Generate the MATLAB files required to generate code, including the two entry-point functions
predict.mandupdate.mfor thepredictandupdatefunctions ofMdl, respectively.Create a MEX function named
ClassificationSVMModelfor the two entry-point functions.Create the code for the MEX function in the
codegen\mex\ClassificationSVMModelfolder.Copy the MEX function to the current folder.
Display the contents of the predict.m, update.m, and initialize.m files by using the type function.
type predict.mfunction varargout = predict(X,varargin) %#codegen
% Autogenerated by MATLAB, 13-Aug-2025 12:38:03
[varargout{1:nargout}] = initialize('predict',X,varargin{:});
end
type update.mfunction update(varargin) %#codegen
% Autogenerated by MATLAB, 13-Aug-2025 12:38:03
initialize('update',varargin{:});
end
type initialize.mfunction [varargout] = initialize(command,varargin) %#codegen
% Autogenerated by MATLAB, 13-Aug-2025 12:38:03
coder.inline('always')
persistent model
if isempty(model)
model = loadLearnerForCoder('ClassificationSVMModel.mat');
end
switch(command)
case 'update'
% Update struct fields: Beta
% Scale
% Bias
% Prior
% Cost
model = update(model,varargin{:});
case 'predict'
% Predict Inputs: X
X = varargin{1};
if nargin == 2
[varargout{1:nargout}] = predict(model,X);
else
PVPairs = cell(1,nargin-2);
for i = 1:nargin-2
PVPairs{1,i} = varargin{i+1};
end
[varargout{1:nargout}] = predict(model,X,PVPairs{:});
end
end
end
Train an SVM model using a partial data set and create a coder configurer for the model. Use the properties of the coder configurer to specify coder attributes of the SVM model parameters. Use the object function of the coder configurer to generate C code that predicts labels for new predictor data. Then retrain the model using the whole data set and update parameters in the generated code without regenerating the code.
Train Model
Load the ionosphere data set. This data set has 34 predictors and 351 binary responses for radar returns, either bad ('b') or good ('g').
load ionosphereTrain a binary SVM classification model using the first 50 observations and a Gaussian kernel function with an automatic kernel scale.
Mdl = fitcsvm(X(1:50,:),Y(1:50), ... 'KernelFunction','gaussian','KernelScale','auto');
Mdl is a ClassificationSVM object.
Create Coder Configurer
Create a coder configurer for the ClassificationSVM model by using learnerCoderConfigurer. Specify the predictor data X in matrix format. Note that the learnerCoderConfigurer function does not support the table format for predictor data. The learnerCoderConfigurer function uses the input X to configure the coder attributes of the predict function input. Also, set the number of outputs to 2 so that the generated code returns predicted labels and scores.
configurer = learnerCoderConfigurer(Mdl,X(1:50,:),'NumOutputs',2);configurer is a ClassificationSVMCoderConfigurer object, which is a coder configurer of a ClassificationSVM object.
Specify Coder Attributes of Parameters
Specify the coder attributes of the SVM classification model parameters so that you can update the parameters in the generated code after retraining the model. This example specifies the coder attributes of predictor data that you want to pass to the generated code and the coder attributes of the support vectors of the SVM model.
First, specify the coder attributes of X so that the generated code accepts any number of observations. Modify the SizeVector and VariableDimensions attributes. The SizeVector attribute specifies the upper bound of the predictor data size, and the VariableDimensions attribute specifies whether each dimension of the predictor data has a variable size or fixed size.
configurer.X.SizeVector = [Inf 34]; configurer.X.VariableDimensions = [true false];
The size of the first dimension is the number of observations. In this case, the code specifies that the upper bound of the size is Inf and the size is variable, meaning that X can have any number of observations. This specification is convenient if you do not know the number of observations when generating code.
The size of the second dimension is the number of predictor variables. This value must be fixed for a machine learning model. X contains 34 predictors, so the value of the SizeVector attribute must be 34 and the value of the VariableDimensions attribute must be false.
If you retrain the SVM model using new data or different settings, the number of support vectors can vary. Therefore, specify the coder attributes of SupportVectors so that you can update the support vectors in the generated code.
configurer.SupportVectors.SizeVector = [250 34];
SizeVector attribute for Alpha has been modified to satisfy configuration constraints. SizeVector attribute for SupportVectorLabels has been modified to satisfy configuration constraints.
configurer.SupportVectors.VariableDimensions = [true false];
VariableDimensions attribute for Alpha has been modified to satisfy configuration constraints. VariableDimensions attribute for SupportVectorLabels has been modified to satisfy configuration constraints.
If you modify the coder attributes of SupportVectors, then the software modifies the coder attributes of Alpha and SupportVectorLabels to satisfy configuration constraints. If the modification of the coder attributes of one parameter requires subsequent changes to other dependent parameters to satisfy configuration constraints, then the software changes the coder attributes of the dependent parameters.
Generate Code
To generate C/C++ code, you must have access to a C/C++ compiler that is configured properly. MATLAB Coder locates and uses a supported, installed compiler. You can use mex -setup to view and change the default compiler. For more details, see Change Default Compiler.
Use generateCode to generate code for the predict and update functions of the SVM classification model (Mdl) with default settings.
generateCode(configurer)
generateCode creates these files in output folder: 'initialize.m', 'predict.m', 'update.m', 'ClassificationSVMModel.mat' Code generation successful.
generateCode generates the MATLAB files required to generate code, including the two entry-point functions predict.m and update.m for the predict and update functions of Mdl, respectively. Then generateCode creates a MEX function named ClassificationSVMModel for the two entry-point functions in the codegen\mex\ClassificationSVMModel folder and copies the MEX function to the current folder.
Verify Generated Code
Pass some predictor data to verify whether the predict function of Mdl and the predict function in the MEX function return the same labels. To call an entry-point function in a MEX function that has more than one entry point, specify the function name as the first input argument.
[label,score] = predict(Mdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);Compare label and label_mex by using isequal.
isequal(label,label_mex)
ans = logical
1
isequal returns logical 1 (true) if all the inputs are equal. The comparison confirms that the predict function of Mdl and the predict function in the MEX function return the same labels.
score_mex might include round-off differences compared with score. In this case, compare score_mex and score, allowing a small tolerance.
find(abs(score-score_mex) > 1e-8)
ans = 0×1 empty double column vector
The comparison confirms that score and score_mex are equal within the tolerance 1e–8.
Retrain Model and Update Parameters in Generated Code
Retrain the model using the entire data set.
retrainedMdl = fitcsvm(X,Y, ... 'KernelFunction','gaussian','KernelScale','auto');
Extract parameters to update by using validatedUpdateInputs. This function detects the modified model parameters in retrainedMdl and validates whether the modified parameter values satisfy the coder attributes of the parameters.
params = validatedUpdateInputs(configurer,retrainedMdl);
Update parameters in the generated code.
ClassificationSVMModel('update',params)Verify Generated Code
Compare the outputs from the predict function of retrainedMdl and the predict function in the updated MEX function.
[label,score] = predict(retrainedMdl,X);
[label_mex,score_mex] = ClassificationSVMModel('predict',X);
isequal(label,label_mex)ans = logical
1
find(abs(score-score_mex) > 1e-8)
ans = 0×1 empty double column vector
The comparison confirms that labels and labels_mex are equal, and the score values are equal within the tolerance.
More About
A coder configurer uses a LearnerCoderInput object to
specify the coder attributes of predict and update
input arguments.
A LearnerCoderInput object has the following attributes to specify the
properties of an input argument array in the generated code.
| Attribute Name | Description |
|---|---|
SizeVector | Array size if the corresponding
Upper bound of the array
size if the corresponding |
VariableDimensions | Indicator specifying whether each dimension of the array has a
variable size or fixed size, specified as
|
DataType | Data type of the array |
Tunability | Indicator specifying whether or not
If you specify other attribute values when
|
After creating a coder configurer, you can modify the coder
attributes by using dot notation. For example, specify the coder attributes of the coefficients
Alpha of the coder configurer configurer as
follows:
configurer.Alpha.SizeVector = [100 1];
configurer.Alpha.VariableDimensions = [1 0];
configurer.Alpha.DataType = 'double';Verbose) as true
(default), then the software displays notification messages when you modify the coder attributes
of a machine learning model parameter and the modification changes the coder attributes of other
dependent parameters.Version History
Introduced in R2018b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
选择网站
选择网站以获取翻译的可用内容,以及查看当地活动和优惠。根据您的位置,我们建议您选择:。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)