fit
Description
The fit
function fits a configured incremental learning model
for kernel regression (incrementalRegressionKernel
object) or binary kernel classification (incrementalClassificationKernel
object) to streaming data. To additionally track
performance metrics using the data as it arrives, use updateMetricsAndFit
instead.
To fit or cross-validate a kernel regression or classification model to an entire batch of
data at once, see fitrkernel
or
fitckernel
,
respectively.
Examples
Incrementally Train Model
Configure incremental learning options for an incrementalClassificationKernel
model object when you call the incrementalClassificationKernel
function. Fit the model to incoming observations.
Create an incremental kernel model for binary classification. Specify an estimation period of 5000 observations and the stochastic gradient descent (SGD) solver.
Mdl = incrementalClassificationKernel(EstimationPeriod=5000,Solver="sgd")
Mdl = incrementalClassificationKernel IsWarm: 0 Metrics: [1x2 table] ClassNames: [1x0 double] ScoreTransform: 'none' NumExpansionDimensions: 0 KernelScale: 1
Mdl
is an incrementalClassificationKernel
model. All its properties are read-only.
Mdl
must be fit to data before you can use it to perform any other operations.
Load the human activity data set. Randomly shuffle the data.
load humanactivity n = numel(actid); rng(1) % For reproducibility idx = randsample(n,n); X = feat(idx,:); Y = actid(idx);
For details on the data set, enter Description
at the command line.
Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize the response by identifying whether the subject is moving (actid
> 2).
Y = Y > 2;
Fit the incremental model to the training data, in chunks of 50 observations at a time, by using the fit
function. At each iteration:
Simulate a data stream by processing 50 observations.
Overwrite the previous incremental model with a new one fitted to the incoming observations.
Store the number of training observations and the prior probability of whether the subject moved (
Y
=true
) to see how they evolve during incremental training.
% Preallocation numObsPerChunk = 50; nchunk = floor(n/numObsPerChunk); numtrainobs = zeros(nchunk,1); priormoved = zeros(nchunk,1); % Incremental fitting for j = 1:nchunk ibegin = min(n,numObsPerChunk*(j-1) + 1); iend = min(n,numObsPerChunk*j); idx = ibegin:iend; Mdl = fit(Mdl,X(idx,:),Y(idx)); numtrainobs(j) = Mdl.NumTrainingObservations; priormoved(j) = Mdl.Prior(Mdl.ClassNames == true); end
Mdl
is an incrementalClassificationKernel
model object trained on all the data in the stream.
To see how the parameters evolve during incremental learning, plot them on separate tiles.
t = tiledlayout(2,1); nexttile plot(numtrainobs) xlim([0 nchunk]) ylabel("Number of Training Observations") xline(Mdl.EstimationPeriod/numObsPerChunk,"-.") nexttile plot(priormoved) xlim([0 nchunk]) ylabel("\pi(Subject Is Moving)") xline(Mdl.EstimationPeriod/numObsPerChunk,"-.") xlabel(t,"Iteration")
The plot suggests that fit
does not fit the model to the data or update the parameters until after the estimation period.
Specify Observation Weights
Train a kernel model for binary classification by using fitckernel
, and convert it to an incremental learner by using incrementalLearner
. Track the model performance and fit the model to streaming data. Specify the observation weights when you call fitckernel
and incremental learning functions.
Load and Preprocess Data
Load the human activity data set. Randomly shuffle the data.
load humanactivity rng(1) % For reproducibility n = numel(actid); idx = randsample(n,n); X = feat(idx,:); Y = actid(idx);
For details on the data set, enter Description
at the command line.
Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize the response by identifying whether the subject is moving (actid
> 2).
Y = Y > 2;
Suppose that the data collected when the subject was not moving (Y
= false
) has double the quality than when the subject was moving. Create a weight variable that attributes 2 to observations collected from a stationary subject, and 1 to a moving subject.
W = ones(n,1) + ~Y;
Train Kernel Model for Binary Classification
Fit a kernel model for binary classification to a random sample of half the data.
idxtt = randsample([true false],n,true); TTMdl = fitckernel(X(idxtt,:),Y(idxtt),Weights=W(idxtt))
TTMdl = ClassificationKernel ResponseName: 'Y' ClassNames: [0 1] Learner: 'svm' NumExpansionDimensions: 2048 KernelScale: 1 Lambda: 8.2967e-05 BoxConstraint: 1
TTMdl
is a ClassificationKernel
model object representing a traditionally trained kernel model for binary classification.
Convert Trained Model
Convert the traditionally trained classification model to a model for incremental learning.
IncrementalMdl = incrementalLearner(TTMdl)
IncrementalMdl = incrementalClassificationKernel IsWarm: 1 Metrics: [1x2 table] ClassNames: [0 1] ScoreTransform: 'none' NumExpansionDimensions: 2048 KernelScale: 1
IncrementalMdl
is an incrementalClassificationKernel
model. All its properties are read-only.
Separately Track Performance Metrics and Fit Model
Perform incremental learning on the rest of the data by using the updateMetrics
and fit
functions. At each iteration:
Simulate a data stream by processing 50 observations at a time.
Call
updateMetrics
to update the cumulative and window classification error of the model given the incoming chunk of observations. Overwrite the previous incremental model to update the losses in theMetrics
property. Note that the function does not fit the model to the chunk of data—the chunk is "new" data for the model. Specify the observation weights.Call
fit
to fit the model to the incoming chunk of observations. Overwrite the previous incremental model to update the model parameters. Specify the observation weights.Store the classification error and number of training observations.
% Preallocation idxil = ~idxtt; nil = sum(idxil); numObsPerChunk = 50; nchunk = floor(nil/numObsPerChunk); ce = array2table(zeros(nchunk,2),VariableNames=["Cumulative","Window"]); numtrainobs = [zeros(nchunk,1)]; Xil = X(idxil,:); Yil = Y(idxil); Wil = W(idxil); % Incremental fitting for j = 1:nchunk ibegin = min(nil,numObsPerChunk*(j-1) + 1); iend = min(nil,numObsPerChunk*j); idx = ibegin:iend; IncrementalMdl = updateMetrics(IncrementalMdl,Xil(idx,:),Yil(idx), ... Weights=Wil(idx)); ce{j,:} = IncrementalMdl.Metrics{"ClassificationError",:}; IncrementalMdl = fit(IncrementalMdl,Xil(idx,:),Yil(idx), ... Weights=Wil(idx)); numtrainobs(j) = IncrementalMdl.NumTrainingObservations; end
IncrementalMdl
is an incrementalClassificationKernel
model object trained on all the data in the stream.
Alternatively, you can use updateMetricsAndFit
to update performance metrics of the model given a new chunk of data, and then fit the model to the data.
Plot a trace plot of the number of training observations and the performance metrics.
t = tiledlayout(2,1); nexttile plot(numtrainobs) xlim([0 nchunk]) ylabel("Number of Training Observations") nexttile plot(ce.Variables) xlim([0 nchunk]) legend(ce.Properties.VariableNames) ylabel("Classification Error") xlabel(t,"Iteration")
The plot suggests that the fit
function fits the model during all incremental learning iterations. The cumulative loss is stable and gradually decreases, whereas the window loss jumps.
Perform Conditional Training
Incrementally train a kernel regression model only when its performance degrades.
Load and shuffle the 2015 NYC housing data set. For more details on the data, see NYC Open Data.
load NYCHousing2015 rng(1) % For reproducibility n = size(NYCHousing2015,1); shuffidx = randsample(n,n); NYCHousing2015 = NYCHousing2015(shuffidx,:);
Extract the response variable SALEPRICE
from the table. For numerical stability, scale SALEPRICE
by 1e6
.
Y = NYCHousing2015.SALEPRICE/1e6; NYCHousing2015.SALEPRICE = [];
To reduce computational cost for this example, remove the NEIGHBORHOOD
column, which contains a categorical variable with 254 categories.
NYCHousing2015.NEIGHBORHOOD = [];
Create dummy variable matrices from the other categorical predictors.
catvars = ["BOROUGH","BUILDINGCLASSCATEGORY"]; dumvarstbl = varfun(@(x)dummyvar(categorical(x)),NYCHousing2015, ... InputVariables=catvars); dumvarmat = table2array(dumvarstbl); NYCHousing2015(:,catvars) = [];
Treat all other numeric variables in the table as predictors of sales price. Concatenate the matrix of dummy variables to the rest of the predictor data.
idxnum = varfun(@isnumeric,NYCHousing2015,OutputFormat="uniform");
X = [dumvarmat NYCHousing2015{:,idxnum}];
Configure a kernel regression model for incremental learning so that it does not have an estimation or metrics warm-up period. Specify a metrics window size of 1000. Prepare the model for updateMetrics
by fitting it to the first 100 observations.
Mdl = incrementalRegressionKernel(EstimationPeriod=0, ...
MetricsWarmupPeriod=0,MetricsWindowSize=1000);
initobs = 100;
Mdl = fit(Mdl,X(1:initobs,:),Y(1:initobs));
Mdl
is an incrementalRegressionKernel
model object.
Perform incremental learning, with conditional fitting, by following this procedure for each iteration:
Simulate a data stream by processing a chunk of 100 observations at a time.
Update the model performance by computing the epsilon insensitive loss, within a 200 observation window.
Fit the model to the chunk of data only when the loss more than doubles from the minimum loss experienced.
When tracking performance and fitting, overwrite the previous incremental model.
Store the epsilon insensitive loss and number of training observations to see how they evolve during training.
Track when
fit
trains the model.
% Preallocation numObsPerChunk = 100; nchunk = floor((n - initobs)/numObsPerChunk); ei = array2table(nan(nchunk,2),VariableNames=["Cumulative","Window"]); numtrainobs = zeros(nchunk,1); trained = false(nchunk,1); % Incremental fitting for j = 1:nchunk ibegin = min(n,numObsPerChunk*(j-1) + 1 + initobs); iend = min(n,numObsPerChunk*j + initobs); idx = ibegin:iend; Mdl = updateMetrics(Mdl,X(idx,:),Y(idx)); ei{j,:} = Mdl.Metrics{"EpsilonInsensitiveLoss",:}; minei = min(ei{:,2}); pdiffloss = (ei{j,2} - minei)/minei*100; if pdiffloss > 100 Mdl = fit(Mdl,X(idx,:),Y(idx)); trained(j) = true; end numtrainobs(j) = Mdl.NumTrainingObservations; end
Mdl
is an incrementalRegressionKernel
model object trained on all the data in the stream.
To see how the number of training observations and model performance evolve during training, plot them on separate tiles.
t = tiledlayout(2,1); nexttile plot(numtrainobs) hold on plot(find(trained),numtrainobs(trained),"r.") xlim([0 nchunk]) ylabel("Number of Training Observations") legend("Number of Training Observations","Training occurs",Location="best") hold off nexttile plot(ei.Variables) xlim([0 nchunk]) ylabel("Epsilon Insensitive Loss") legend(ei.Properties.VariableNames) xlabel(t,"Iteration")
The trace plot of the number of training observations shows periods of constant values, during which the loss does not double from the minimum experienced.
Input Arguments
Mdl
— Incremental learning model
incrementalClassificationKernel
model object | incrementalRegressionKernel
model object
Incremental learning model to fit to streaming data, specified as an incrementalClassificationKernel
or incrementalRegressionKernel
model object. You can create
Mdl
directly or by converting a supported, traditionally trained
machine learning model using the incrementalLearner
function. For
more details, see the corresponding reference page.
X
— Chunk of predictor data
floating-point matrix
Chunk of predictor data, specified as a floating-point matrix of n
observations and Mdl.NumPredictors
predictor variables.
The length of the observation labels Y
and the number of observations in X
must be equal; Y(
is the label of observation j (row) in j
)X
.
Note
If
Mdl.NumPredictors
= 0,fit
infers the number of predictors fromX
, and sets the corresponding property of the output model. Otherwise, if the number of predictor variables in the streaming data changes fromMdl.NumPredictors
,fit
issues an error.fit
supports only floating-point input predictor data. If your input data includes categorical data, you must prepare an encoded version of the categorical data. Usedummyvar
to convert each categorical variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable matrices and any other numeric predictors. For more details, see Dummy Variables.
Data Types: single
| double
Y
— Chunk of responses (labels)
categorical array | character array | string array | logical vector | floating-point vector | cell array of character vectors
Chunk of responses (labels), specified as a categorical, character, or string array, a logical or floating-point vector, or a cell array of character vectors for classification problems; or a floating-point vector for regression problems.
The length of the observation labels Y
and the number of
observations in X
must be equal;
Y(
is the label of observation
j (row) in j
)X
.
For classification problems:
fit
supports binary classification only.When the
ClassNames
property of the input modelMdl
is nonempty, the following conditions apply:If
Y
contains a label that is not a member ofMdl.ClassNames
,fit
issues an error.The data type of
Y
andMdl.ClassNames
must be the same.
Data Types: char
| string
| cell
| categorical
| logical
| single
| double
weights
— Chunk of observation weights
floating-point vector of positive values
Chunk of observation weights, specified as a floating-point vector of positive values.
fit
weighs the observations in X
with the corresponding values in weights
. The size of
weights
must equal n, the number of
observations in X
.
By default, weights
is
ones(
.n
,1)
For more details, including normalization schemes, see Observation Weights.
Data Types: double
| single
Note
If an observation (predictor or label) or weight contains at least one missing (
NaN
) value,fit
ignores the observation. Consequently,fit
uses fewer than n observations to create an updated model, where n is the number of observations inX
.The chunk size n and the stochastic gradient descent (SGD) hyperparameter mini-batch size (
Mdl.SolverOptions.BatchSize
) can be different values, and n does not have to be an exact multiple of the mini-batch size.fit
uses theBatchSize
observations when it applies SGD for each learning cycle. The number of observations in the last mini-batch for the last learning cycle can be less than or equal toMdl.SolverOptions.BatchSize
.
Output Arguments
Mdl
— Updated incremental learning model
incrementalClassificationKernel
model object | incrementalRegressionKernel
model object
Updated incremental learning model, returned as an incremental learning model object
of the same data type as the input model Mdl
, either incrementalClassificationKernel
or incrementalRegressionKernel
.
If Mdl.EstimationPeriod
> 0,
fit
estimates hyperparameters using the first
Mdl.EstimationPeriod
observations passed to it; the function does not
train the input model using that data. However, if an incoming chunk of n
observations is greater than or equal to the number of observations remaining in the estimation
period m, fit
estimates hyperparameters using
the first n – m observations, and fits the input model to
the remaining m observations. Consequently, the software updates model
parameters, hyperparameter properties, and recordkeeping properties such as
NumTrainingObservations
.
For classification problems, if the ClassNames
property of the input model Mdl
is an empty array, fit
sets the ClassNames
property of the output model Mdl
to unique(Y)
.
Tips
Unlike traditional training, incremental learning might not have a separate test (holdout) set. Therefore, to treat each incoming chunk of data as a test set, pass the incremental model and each incoming chunk to
updateMetrics
before training the model on the same data.
Algorithms
Observation Weights
For classification problems, if the prior class probability distribution is known (in other words, the prior distribution is not empirical), fit
normalizes observation weights to sum to the prior class probabilities in the respective classes. This action implies that observation weights are the respective prior class probabilities by default.
For regression problems or if the prior class probability distribution is empirical, the software normalizes the specified observation weights to sum to 1 each time you call fit
.
Version History
Introduced in R2022a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)