Main Content

resume

Resume training of Gaussian kernel regression model

Syntax

``UpdatedMdl = resume(Mdl,X,Y)``
``UpdatedMdl = resume(Mdl,Tbl,ResponseVarName)``
``UpdatedMdl = resume(Mdl,Tbl,Y)``
``UpdatedMdl = resume(___,Name,Value)``
``[UpdatedMdl,FitInfo] = resume(___)``

Description

example

````UpdatedMdl = resume(Mdl,X,Y)` continues training with the same options used to train `Mdl`, including the training data (predictor data in `X` and response data in `Y`) and the feature expansion. The training starts at the current estimated parameters in `Mdl`. The function returns a new Gaussian kernel regression model `UpdatedMdl`.```
````UpdatedMdl = resume(Mdl,Tbl,ResponseVarName)` continues training with the predictor data in `Tbl` and the true responses in `Tbl.ResponseVarName`.```
````UpdatedMdl = resume(Mdl,Tbl,Y)` continues training with the predictor data in table `Tbl` and the true responses in `Y`.```

example

````UpdatedMdl = resume(___,Name,Value)` specifies options using one or more name-value pair arguments in addition to any of the input argument combinations in previous syntaxes. For example, you can modify convergence control options, such as convergence tolerances and the maximum number of additional optimization iterations.```

example

````[UpdatedMdl,FitInfo] = resume(___)` also returns the fit information in the structure array `FitInfo`.```

Examples

collapse all

Resume training a Gaussian kernel regression model for more iterations to improve the regression loss.

Load the `carbig` data set.

`load carbig`

Specify the predictor variables (`X`) and the response variable (`Y`).

```X = [Acceleration,Cylinders,Displacement,Horsepower,Weight]; Y = MPG;```

Delete rows of `X` and `Y` where either array has `NaN` values. Removing rows with `NaN` values before passing data to `fitrkernel` can speed up training and reduce memory usage.

```R = rmmissing([X Y]); % Data with missing entries removed X = R(:,1:5); Y = R(:,end); ```

Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the partition definition.

```rng(10) % For reproducibility N = length(Y); cvp = cvpartition(N,'Holdout',0.1); idxTrn = training(cvp); % Training set indices idxTest = test(cvp); % Test set indices```

Train a kernel regression model. Standardize the training data, set the iteration limit to 5, and specify `'Verbose',1` to display diagnostic information.

```Xtrain = X(idxTrn,:); Ytrain = Y(idxTrn); Mdl = fitrkernel(Xtrain,Ytrain,'Standardize',true, ... 'IterationLimit',5,'Verbose',1)```
```|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 5.691016e+00 | 0.000000e+00 | 5.852758e-02 | | 0 | | LBFGS | 1 | 1 | 5.086537e+00 | 8.000000e+00 | 5.220869e-02 | 9.846711e-02 | 256 | | LBFGS | 1 | 2 | 3.862301e+00 | 5.000000e-01 | 3.796034e-01 | 5.998808e-01 | 256 | | LBFGS | 1 | 3 | 3.460613e+00 | 1.000000e+00 | 3.257790e-01 | 1.615091e-01 | 256 | | LBFGS | 1 | 4 | 3.136228e+00 | 1.000000e+00 | 2.832861e-02 | 8.006254e-02 | 256 | | LBFGS | 1 | 5 | 3.063978e+00 | 1.000000e+00 | 1.475038e-02 | 3.314455e-02 | 256 | |=================================================================================================================| ```
```Mdl = RegressionKernel ResponseName: 'Y' Learner: 'svm' NumExpansionDimensions: 256 KernelScale: 1 Lambda: 0.0028 BoxConstraint: 1 Epsilon: 0.8617 ```

`Mdl` is a` RegressionKernel` model.

Estimate the epsilon-insensitive error for the test set.

```Xtest = X(idxTest,:); Ytest = Y(idxTest); L = loss(Mdl,Xtest,Ytest,'LossFun','epsiloninsensitive')```
```L = 2.0674 ```

Continue training the model by using `resume`. This function continues training with the same options used for training `Mdl`.

`UpdatedMdl = resume(Mdl,Xtrain,Ytrain);`
```|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 3.063978e+00 | 0.000000e+00 | 1.475038e-02 | | 256 | | LBFGS | 1 | 1 | 3.007822e+00 | 8.000000e+00 | 1.391637e-02 | 2.603966e-02 | 256 | | LBFGS | 1 | 2 | 2.817171e+00 | 5.000000e-01 | 5.949008e-02 | 1.918084e-01 | 256 | | LBFGS | 1 | 3 | 2.807294e+00 | 2.500000e-01 | 6.798867e-02 | 2.973097e-02 | 256 | | LBFGS | 1 | 4 | 2.791060e+00 | 1.000000e+00 | 2.549575e-02 | 1.639328e-02 | 256 | | LBFGS | 1 | 5 | 2.767821e+00 | 1.000000e+00 | 6.154419e-03 | 2.468903e-02 | 256 | | LBFGS | 1 | 6 | 2.738163e+00 | 1.000000e+00 | 5.949008e-02 | 9.476263e-02 | 256 | | LBFGS | 1 | 7 | 2.719146e+00 | 1.000000e+00 | 1.699717e-02 | 1.849972e-02 | 256 | | LBFGS | 1 | 8 | 2.705941e+00 | 1.000000e+00 | 3.116147e-02 | 4.152590e-02 | 256 | | LBFGS | 1 | 9 | 2.701162e+00 | 1.000000e+00 | 5.665722e-03 | 9.401466e-03 | 256 | | LBFGS | 1 | 10 | 2.695341e+00 | 5.000000e-01 | 3.116147e-02 | 4.968046e-02 | 256 | | LBFGS | 1 | 11 | 2.691277e+00 | 1.000000e+00 | 8.498584e-03 | 1.017446e-02 | 256 | | LBFGS | 1 | 12 | 2.689972e+00 | 1.000000e+00 | 1.983003e-02 | 9.938921e-03 | 256 | | LBFGS | 1 | 13 | 2.688979e+00 | 1.000000e+00 | 1.416431e-02 | 6.606316e-03 | 256 | | LBFGS | 1 | 14 | 2.687787e+00 | 1.000000e+00 | 1.621956e-03 | 7.089542e-03 | 256 | | LBFGS | 1 | 15 | 2.686539e+00 | 1.000000e+00 | 1.699717e-02 | 1.169701e-02 | 256 | | LBFGS | 1 | 16 | 2.685356e+00 | 1.000000e+00 | 1.133144e-02 | 1.069310e-02 | 256 | | LBFGS | 1 | 17 | 2.685021e+00 | 5.000000e-01 | 1.133144e-02 | 2.104248e-02 | 256 | | LBFGS | 1 | 18 | 2.684002e+00 | 1.000000e+00 | 2.832861e-03 | 6.175231e-03 | 256 | | LBFGS | 1 | 19 | 2.683507e+00 | 1.000000e+00 | 5.665722e-03 | 3.724026e-03 | 256 | | LBFGS | 1 | 20 | 2.683343e+00 | 5.000000e-01 | 5.665722e-03 | 9.549119e-03 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 21 | 2.682897e+00 | 1.000000e+00 | 5.665722e-03 | 7.172867e-03 | 256 | | LBFGS | 1 | 22 | 2.682682e+00 | 1.000000e+00 | 2.832861e-03 | 2.587726e-03 | 256 | | LBFGS | 1 | 23 | 2.682485e+00 | 1.000000e+00 | 2.832861e-03 | 2.953648e-03 | 256 | | LBFGS | 1 | 24 | 2.682326e+00 | 1.000000e+00 | 2.832861e-03 | 7.777294e-03 | 256 | | LBFGS | 1 | 25 | 2.681914e+00 | 1.000000e+00 | 2.832861e-03 | 2.778555e-03 | 256 | | LBFGS | 1 | 26 | 2.681867e+00 | 5.000000e-01 | 1.031085e-03 | 3.638352e-03 | 256 | | LBFGS | 1 | 27 | 2.681725e+00 | 1.000000e+00 | 5.665722e-03 | 1.515199e-03 | 256 | | LBFGS | 1 | 28 | 2.681692e+00 | 5.000000e-01 | 1.314940e-03 | 1.850055e-03 | 256 | | LBFGS | 1 | 29 | 2.681625e+00 | 1.000000e+00 | 2.832861e-03 | 1.456903e-03 | 256 | | LBFGS | 1 | 30 | 2.681594e+00 | 5.000000e-01 | 2.832861e-03 | 8.704875e-04 | 256 | | LBFGS | 1 | 31 | 2.681581e+00 | 5.000000e-01 | 8.498584e-03 | 3.934768e-04 | 256 | | LBFGS | 1 | 32 | 2.681579e+00 | 1.000000e+00 | 8.498584e-03 | 1.847866e-03 | 256 | | LBFGS | 1 | 33 | 2.681553e+00 | 1.000000e+00 | 9.857038e-04 | 6.509825e-04 | 256 | | LBFGS | 1 | 34 | 2.681541e+00 | 5.000000e-01 | 8.498584e-03 | 6.635528e-04 | 256 | | LBFGS | 1 | 35 | 2.681499e+00 | 1.000000e+00 | 5.665722e-03 | 6.194735e-04 | 256 | | LBFGS | 1 | 36 | 2.681493e+00 | 5.000000e-01 | 1.133144e-02 | 1.617763e-03 | 256 | | LBFGS | 1 | 37 | 2.681473e+00 | 1.000000e+00 | 9.869233e-04 | 8.418484e-04 | 256 | | LBFGS | 1 | 38 | 2.681469e+00 | 1.000000e+00 | 5.665722e-03 | 1.069722e-03 | 256 | | LBFGS | 1 | 39 | 2.681432e+00 | 1.000000e+00 | 2.832861e-03 | 8.501930e-04 | 256 | | LBFGS | 1 | 40 | 2.681423e+00 | 2.500000e-01 | 1.133144e-02 | 9.543716e-04 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 41 | 2.681416e+00 | 1.000000e+00 | 2.832861e-03 | 8.763251e-04 | 256 | | LBFGS | 1 | 42 | 2.681413e+00 | 5.000000e-01 | 2.832861e-03 | 4.101888e-04 | 256 | | LBFGS | 1 | 43 | 2.681403e+00 | 1.000000e+00 | 5.665722e-03 | 2.713209e-04 | 256 | | LBFGS | 1 | 44 | 2.681392e+00 | 1.000000e+00 | 2.832861e-03 | 2.115241e-04 | 256 | | LBFGS | 1 | 45 | 2.681383e+00 | 1.000000e+00 | 2.832861e-03 | 2.872858e-04 | 256 | | LBFGS | 1 | 46 | 2.681374e+00 | 1.000000e+00 | 8.498584e-03 | 5.771001e-04 | 256 | | LBFGS | 1 | 47 | 2.681353e+00 | 1.000000e+00 | 2.832861e-03 | 3.160871e-04 | 256 | | LBFGS | 1 | 48 | 2.681334e+00 | 5.000000e-01 | 8.498584e-03 | 1.045502e-03 | 256 | | LBFGS | 1 | 49 | 2.681314e+00 | 1.000000e+00 | 7.878714e-04 | 1.505118e-03 | 256 | | LBFGS | 1 | 50 | 2.681306e+00 | 1.000000e+00 | 2.832861e-03 | 4.756894e-04 | 256 | | LBFGS | 1 | 51 | 2.681301e+00 | 1.000000e+00 | 1.133144e-02 | 3.664873e-04 | 256 | | LBFGS | 1 | 52 | 2.681288e+00 | 1.000000e+00 | 2.832861e-03 | 1.449821e-04 | 256 | | LBFGS | 1 | 53 | 2.681287e+00 | 2.500000e-01 | 1.699717e-02 | 2.357176e-04 | 256 | | LBFGS | 1 | 54 | 2.681282e+00 | 1.000000e+00 | 5.665722e-03 | 2.046663e-04 | 256 | | LBFGS | 1 | 55 | 2.681278e+00 | 1.000000e+00 | 2.832861e-03 | 2.546349e-04 | 256 | | LBFGS | 1 | 56 | 2.681276e+00 | 2.500000e-01 | 1.307940e-03 | 1.966786e-04 | 256 | | LBFGS | 1 | 57 | 2.681274e+00 | 5.000000e-01 | 1.416431e-02 | 1.005310e-04 | 256 | | LBFGS | 1 | 58 | 2.681271e+00 | 5.000000e-01 | 1.118892e-03 | 1.147324e-04 | 256 | | LBFGS | 1 | 59 | 2.681269e+00 | 1.000000e+00 | 2.832861e-03 | 1.332914e-04 | 256 | | LBFGS | 1 | 60 | 2.681268e+00 | 2.500000e-01 | 1.132045e-03 | 5.441369e-05 | 256 | |=================================================================================================================| ```

Estimate the epsilon-insensitive error for the test set using the updated model.

`UpdatedL = loss(UpdatedMdl,Xtest,Ytest,'LossFun','epsiloninsensitive')`
```UpdatedL = 1.8933 ```

The regression error decreases by a factor of about `0.08` after `resume` updates the regression model with more iterations.

Load the `carbig` data set.

`load carbig`

Specify the predictor variables (`X`) and the response variable (`Y`).

```X = [Acceleration,Cylinders,Displacement,Horsepower,Weight]; Y = MPG;```

Delete rows of `X` and `Y` where either array has `NaN` values. Removing rows with `NaN` values before passing data to `fitrkernel` can speed up training and reduce memory usage.

```R = rmmissing([X Y]); % Data with missing entries removed X = R(:,1:5); Y = R(:,end); ```

Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the partition definition.

```rng(10) % For reproducibility N = length(Y); cvp = cvpartition(N,'Holdout',0.1); idxTrn = training(cvp); % Training set indices idxTest = test(cvp); % Test set indices```

Train a kernel regression model with relaxed convergence control training options by using the name-value arguments `'BetaTolerance'` and `'GradientTolerance'`. Standardize the training data, and specify `'Verbose',1` to display diagnostic information.

```Xtrain = X(idxTrn,:); Ytrain = Y(idxTrn); [Mdl,FitInfo] = fitrkernel(Xtrain,Ytrain,'Standardize',true,'Verbose',1, ... 'BetaTolerance',2e-2,'GradientTolerance',2e-2);```
```|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 5.691016e+00 | 0.000000e+00 | 5.852758e-02 | | 0 | | LBFGS | 1 | 1 | 5.086537e+00 | 8.000000e+00 | 5.220869e-02 | 9.846711e-02 | 256 | | LBFGS | 1 | 2 | 3.862301e+00 | 5.000000e-01 | 3.796034e-01 | 5.998808e-01 | 256 | | LBFGS | 1 | 3 | 3.460613e+00 | 1.000000e+00 | 3.257790e-01 | 1.615091e-01 | 256 | | LBFGS | 1 | 4 | 3.136228e+00 | 1.000000e+00 | 2.832861e-02 | 8.006254e-02 | 256 | | LBFGS | 1 | 5 | 3.063978e+00 | 1.000000e+00 | 1.475038e-02 | 3.314455e-02 | 256 | |=================================================================================================================| ```

`Mdl` is a` RegressionKernel` model.

Estimate the epsilon-insensitive error for the test set.

```Xtest = X(idxTest,:); Ytest = Y(idxTest); L = loss(Mdl,Xtest,Ytest,'LossFun','epsiloninsensitive')```
```L = 2.0674 ```

Continue training the model by using `resume` with modified convergence control options.

```[UpdatedMdl,UpdatedFitInfo] = resume(Mdl,Xtrain,Ytrain, ... 'BetaTolerance',2e-3,'GradientTolerance',2e-3);```
```|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 3.063978e+00 | 0.000000e+00 | 1.475038e-02 | | 256 | | LBFGS | 1 | 1 | 3.007822e+00 | 8.000000e+00 | 1.391637e-02 | 2.603966e-02 | 256 | | LBFGS | 1 | 2 | 2.817171e+00 | 5.000000e-01 | 5.949008e-02 | 1.918084e-01 | 256 | | LBFGS | 1 | 3 | 2.807294e+00 | 2.500000e-01 | 6.798867e-02 | 2.973097e-02 | 256 | | LBFGS | 1 | 4 | 2.791060e+00 | 1.000000e+00 | 2.549575e-02 | 1.639328e-02 | 256 | | LBFGS | 1 | 5 | 2.767821e+00 | 1.000000e+00 | 6.154419e-03 | 2.468903e-02 | 256 | | LBFGS | 1 | 6 | 2.738163e+00 | 1.000000e+00 | 5.949008e-02 | 9.476263e-02 | 256 | | LBFGS | 1 | 7 | 2.719146e+00 | 1.000000e+00 | 1.699717e-02 | 1.849972e-02 | 256 | | LBFGS | 1 | 8 | 2.705941e+00 | 1.000000e+00 | 3.116147e-02 | 4.152590e-02 | 256 | | LBFGS | 1 | 9 | 2.701162e+00 | 1.000000e+00 | 5.665722e-03 | 9.401466e-03 | 256 | | LBFGS | 1 | 10 | 2.695341e+00 | 5.000000e-01 | 3.116147e-02 | 4.968046e-02 | 256 | | LBFGS | 1 | 11 | 2.691277e+00 | 1.000000e+00 | 8.498584e-03 | 1.017446e-02 | 256 | | LBFGS | 1 | 12 | 2.689972e+00 | 1.000000e+00 | 1.983003e-02 | 9.938921e-03 | 256 | | LBFGS | 1 | 13 | 2.688979e+00 | 1.000000e+00 | 1.416431e-02 | 6.606316e-03 | 256 | | LBFGS | 1 | 14 | 2.687787e+00 | 1.000000e+00 | 1.621956e-03 | 7.089542e-03 | 256 | |=================================================================================================================| ```

Estimate the epsilon-insensitive error for the test set using the updated model.

`UpdatedL = loss(UpdatedMdl,Xtest,Ytest,'LossFun','epsiloninsensitive')`
```UpdatedL = 1.8891 ```

The regression error decreases after `resume` updates the regression model with smaller convergence tolerances.

Display the outputs `FitInfo` and `UpdatedFitInfo`.

`FitInfo`
```FitInfo = struct with fields: Solver: 'LBFGS-fast' LossFunction: 'epsiloninsensitive' Lambda: 0.0028 BetaTolerance: 0.0200 GradientTolerance: 0.0200 ObjectiveValue: 3.0640 GradientMagnitude: 0.0148 RelativeChangeInBeta: 0.0331 FitTime: 0.1785 History: [1x1 struct] ```
`UpdatedFitInfo`
```UpdatedFitInfo = struct with fields: Solver: 'LBFGS-fast' LossFunction: 'epsiloninsensitive' Lambda: 0.0028 BetaTolerance: 0.0020 GradientTolerance: 0.0020 ObjectiveValue: 2.6878 GradientMagnitude: 0.0016 RelativeChangeInBeta: 0.0071 FitTime: 0.1146 History: [1x1 struct] ```

Both trainings terminate because the software satisfies the absolute gradient tolerance.

Plot the gradient magnitude versus the number of iterations by using `UpdatedFitInfo.History.GradientMagnitude`. Note that the `History` field of `UpdatedFitInfo` includes the information in the `History` field of `FitInfo`.

```semilogy(UpdatedFitInfo.History.GradientMagnitude,'o-') ax = gca; ax.XTick = 1:21; ax.XTickLabel = UpdatedFitInfo.History.IterationNumber; grid on xlabel('Number of Iterations') ylabel('Gradient Magnitude')```

The first training terminates after five iterations because the gradient magnitude becomes less than `2e-2`. The second training terminates after 14 iterations because the gradient magnitude becomes less than `2e-3`.

Input Arguments

collapse all

Kernel regression model, specified as a `RegressionKernel` model object. You can create a `RegressionKernel` model object using `fitrkernel`.

Predictor data used to train `Mdl`, specified as an n-by-p numeric matrix, where n is the number of observations and p is the number of predictors.

Data Types: `single` | `double`

Response data used to train `Mdl`, specified as a numeric vector.

Data Types: `double` | `single`

Sample data used to train `Mdl`, specified as a table. Each row of `Tbl` corresponds to one observation, and each column corresponds to one predictor variable. Optionally, `Tbl` can contain additional columns for the response variable and observation weights. `Tbl` must contain all of the predictors used to train `Mdl`. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If you trained `Mdl` using sample data contained in a table, then the input data for `resume` must also be in a table.

Name of the response variable used to train `Mdl`, specified as the name of a variable in `Tbl`. The `ResponseVarName` value must match the name `Mdl.ResponseName`.

Data Types: `char` | `string`

Note

`resume` should run only on the same training data and observation weights (`Weights`) used to train `Mdl`. The `resume` function uses the same training options, such as feature expansion, used to train `Mdl`.

Name-Value Arguments

Specify optional pairs of arguments as `Name1=Value1,...,NameN=ValueN`, where `Name` is the argument name and `Value` is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose `Name` in quotes.

Example: `UpdatedMdl = resume(Mdl,X,Y,'BetaTolerance',1e-3)` resumes training with the same options used to train `Mdl`, except the relative tolerance on the linear coefficients and the bias term.

Observation weights used to train `Mdl`, specified as the comma-separated pair consisting of `'Weights'` and a numeric vector or the name of a variable in `Tbl`.

• If `Weights` is a numeric vector, then the size of `Weights` must be equal to the number of rows in `X` or `Tbl`.

• If `Weights` is the name of a variable in `Tbl`, you must specify `Weights` as a character vector or string scalar. For example, if the weights are stored as `Tbl.W`, then specify `Weights` as `'W'`. Otherwise, the software treats all columns of `Tbl`, including `Tbl.W`, as predictors.

If you supply the observation weights, `resume` normalizes `Weights` to sum to 1.

Data Types: `double` | `single` | `char` | `string`

Relative tolerance on the linear coefficients and the bias term (intercept), specified as a nonnegative scalar.

Let ${B}_{t}=\left[{\beta }_{t}{}^{\prime }\text{\hspace{0.17em}}\text{\hspace{0.17em}}{b}_{t}\right]$, that is, the vector of the coefficients and the bias term at optimization iteration t. If ${‖\frac{{B}_{t}-{B}_{t-1}}{{B}_{t}}‖}_{2}<\text{BetaTolerance}$, then optimization terminates.

If you also specify `GradientTolerance`, then optimization terminates when the software satisfies either stopping criterion.

By default, the value is the same `BetaTolerance` value used to train `Mdl`.

Example: `'BetaTolerance',1e-6`

Data Types: `single` | `double`

Absolute gradient tolerance, specified as a nonnegative scalar.

Let $\nabla {ℒ}_{t}$ be the gradient vector of the objective function with respect to the coefficients and bias term at optimization iteration t. If ${‖\nabla {ℒ}_{t}‖}_{\infty }=\mathrm{max}|\nabla {ℒ}_{t}|<\text{GradientTolerance}$, then optimization terminates.

If you also specify `BetaTolerance`, then optimization terminates when the software satisfies either stopping criterion.

By default, the value is the same `GradientTolerance` value used to train `Mdl`.

Example: `'GradientTolerance',1e-5`

Data Types: `single` | `double`

Maximum number of additional optimization iterations, specified as the comma-separated pair consisting of `'IterationLimit'` and a positive integer.

The default value is 1000 if the transformed data fits in memory (`Mdl.ModelParameters.BlockSize`), which you specify by using the `'BlockSize'` name-value pair argument when training `Mdl` with `fitrkernel`. Otherwise, the default value is 100.

Note that the default value is not the value used to train `Mdl`.

Example: `'IterationLimit',500`

Data Types: `single` | `double`

Output Arguments

collapse all

Updated kernel regression model, returned as a `RegressionKernel` model object.

Optimization details, returned as a structure array including fields described in this table. The fields contain final values or name-value pair argument specifications.

FieldDescription
`Solver`

Objective function minimization technique: `'LBFGS-fast'`, `'LBFGS-blockwise'`, or `'LBFGS-tall'`. For details, see the Algorithms section of `fitrkernel`.

`LossFunction`Loss function. Either mean squared error (MSE) or epsilon-insensitive, depending on the type of linear regression model. See `Learner` of `fitrkernel`.
`Lambda`Regularization term strength. See `Lambda` of `fitrkernel`.
`BetaTolerance`Relative tolerance on the linear coefficients and the bias term. See `BetaTolerance`.
`GradientTolerance`Absolute gradient tolerance. See `GradientTolerance`.
`ObjectiveValue`Value of the objective function when optimization terminates. The regression loss plus the regularization term compose the objective function.
`GradientMagnitude`Infinite norm of the gradient vector of the objective function when optimization terminates. See `GradientTolerance`.
`RelativeChangeInBeta`Relative changes in the linear coefficients and the bias term when optimization terminates. See `BetaTolerance`.
`FitTime`Elapsed, wall-clock time (in seconds) required to fit the model to the data.
`History`History of optimization information. This field also includes the optimization information from training `Mdl`. This field is empty (`[]`) if you specify `'Verbose',0` when training `Mdl`. For details, see `Verbose` and the Algorithms section of `fitrkernel`.

To access fields, use dot notation. For example, to access the vector of objective function values for each iteration, enter `FitInfo.ObjectiveValue` in the Command Window.

Examine the information provided by `FitInfo` to assess whether convergence is satisfactory.

More About

collapse all

Random Feature Expansion

Random feature expansion, such as Random Kitchen Sinks[1] or Fastfood[2], is a scheme to approximate Gaussian kernels of the kernel regression algorithm for big data in a computationally efficient way. Random feature expansion is more practical for big data applications that have large training sets, but can also be applied to smaller data sets that fit in memory.

After mapping the predictor data into a high-dimensional space, the kernel regression algorithm searches for an optimal function that deviates from each response data point (yi) by values no greater than the epsilon margin (ε).

Some regression problems cannot be described adequately using a linear model. In such cases, obtain a nonlinear regression model by replacing the dot product x1x2 with a nonlinear kernel function $G\left({x}_{1},{x}_{2}\right)=〈\phi \left({x}_{1}\right),\phi \left({x}_{2}\right)〉$, where xi is the ith observation (row vector) and φ(xi) is a transformation that maps xi to a high-dimensional space (called the “kernel trick”). However, evaluating G(x1,x2), the Gram matrix, for each pair of observations is computationally expensive for a large data set (large n).

The random feature expansion scheme finds a random transformation so that its dot product approximates the Gaussian kernel. That is,

`$G\left({x}_{1},{x}_{2}\right)=〈\phi \left({x}_{1}\right),\phi \left({x}_{2}\right)〉\approx T\left({x}_{1}\right)T\left({x}_{2}\right)\text{'},$`

where T(x) maps x in ${ℝ}^{p}$ to a high-dimensional space (${ℝ}^{m}$). The Random Kitchen Sinks[1] scheme uses the random transformation

`$T\left(x\right)={m}^{-1/2}\mathrm{exp}\left(iZx\text{'}\right)\text{'},$`

where $Z\in {ℝ}^{m×p}$ is a sample drawn from $N\left(0,{\sigma }^{-2}\right)$ and σ is a kernel scale. This scheme requires O(mp) computation and storage. The Fastfood[2] scheme introduces another random basis V instead of Z using Hadamard matrices combined with Gaussian scaling matrices. This random basis reduces computation cost to O(m`log`p) and reduces storage to O(m).

You can specify values for m and σ, using the `NumExpansionDimensions` and `KernelScale` name-value pair arguments of `fitrkernel`, respectively.

The `fitrkernel` function uses the Fastfood scheme for random feature expansion and uses linear regression to train a Gaussian kernel regression model. Unlike solvers in the `fitrsvm` function, which require computation of the n-by-n Gram matrix, the solver in `fitrkernel` only needs to form a matrix of size n-by-m, with m typically much less than n for big data.

Version History

Introduced in R2018a