idddtree2
Inverse dual-tree and double-density 2-D wavelet transform
Syntax
Description
Examples
Demonstrate perfect reconstruction of an image using a complex oriented dual-tree wavelet transform.
Load the image and obtain the complex oriented dual-tree wavelet transform down to level 5 using dddtree2. Reconstruct the image using idddtree2 and demonstrate perfect reconstruction.
load woman; wt = dddtree2('cplxdt',X,5,'dtf2'); xrec = idddtree2(wt); max(max(abs(X-xrec)))
ans = 7.3896e-12
Input Arguments
Wavelet transform, returned as a structure from dddtree2 with these fields:
Type of wavelet decomposition (filter bank), specified as one
of 'dwt', 'ddt', 'realdt', 'cplxdt', 'realdddt',
or 'cplxdddt'. 'dwt' is the
critically sampled DWT. 'ddt' produces a double-density
wavelet transform with one scaling and two wavelet filters for both
row and column filtering. 'realdt' and 'cplxdt' produce
oriented dual-tree wavelet transforms consisting of two and four separable
wavelet transforms. 'realdddt' and 'cplxdddt' produce
double-density dual-tree wavelet transforms consisting of two and
four separable wavelet transforms.
Level of the wavelet decomposition, specified as a positive integer.
Decomposition (analysis) and reconstruction (synthesis) filters, specified as a structure with these fields:
First-stage analysis filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.
Analysis filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the analysis filters for the corresponding tree.
First-level reconstruction filters, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage synthesis filters for the corresponding tree.
Reconstruction filters for levels > 1, specified as an N-by-2 or N-by-3 matrix for single-tree wavelet transforms, or a 1-by-2 cell array of two N-by-2 or N-by-3 matrices for dual-tree wavelet transforms. The matrices are N-by-3 for the double-density wavelet transforms. For an N-by-2 matrix, the first column of the matrix is the scaling (lowpass) filter and the second column is the wavelet (highpass) filter. For an N-by-3 matrix, the first column of the matrix is the scaling (lowpass) filter and the second and third columns are the wavelet (highpass) filters. For the dual-tree transforms, each element of the cell array contains the first-stage analysis filters for the corresponding tree.
Wavelet transform coefficients, specified as a 1-by-(level+1)
cell array of matrices. The size and structure of the matrix elements
of the cell array depend on the type of wavelet transform as follows:
'dwt'—cfs{j}(:,:,d)j = 1,2,...
levelis the level.d = 1,2,3 is the orientation.
cfs{level+1}(:,:)are the lowpass, or scaling, coefficients.
'ddt'—cfs{j}(:,:,d)j = 1,2,...
levelis the level.d = 1,2,3,4,5,6,7,8 is the orientation.
cfs{level+1}(:,:)are the lowpass, or scaling, coefficients.
'realddt'—cfs{j}(:,:,d,k)j = 1,2,...
levelis the level.d = 1,2,3 is the orientation.
k = 1,2 is the wavelet transform tree.
cfs{level+1}(:,:)are the lowpass, or scaling, coefficients.
'cplxdt'—cfs{j}(:,:,d,k,m)j = 1,2,...
levelis the level.d = 1,2,3 is the orientation.
k = 1,2 is the wavelet transform tree.
m = 1,2 are the real and imaginary parts.
cfs{level+1}(:,:)are the lowpass, or scaling, coefficients..
'realdddt'—cfs{j}(:,:,d,k)j = 1,2,...
levelis the level.d = 1,2,3 is the orientation.
k = 1,2 is the wavelet transform tree.
cfs{level+1}(:,:)are the lowpass, or scaling, coefficients.
'cplxdddt'—cfs{j}(:,:,d,k,m)j = 1,2,...
levelis the level.d = 1,2,3 is the orientation.
k = 1,2 is the wavelet transform tree.
m = 1,2 are the real and imaginary parts.
cfs{level+1}(:,:)are the lowpass, or scaling, coefficients.
Output Arguments
Synthesized image, returned as a matrix.
Data Types: double
Version History
Introduced in R2013b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
选择网站
选择网站以获取翻译的可用内容,以及查看当地活动和优惠。根据您的位置,我们建议您选择:。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)