Loop over ode45 to find minimum of a parameter

2 次查看(过去 30 天)
I'm trying to loop over an ode45 for different b and k, to find the couple of the two that minimize the error from the analytical solution. But when I run this code it enters in an infinite loop. What am I doing wrong?
T = readtable('samples.csv'); % three column [time,analytical_sol1,analytical_sol2]
test = @(t,y,b,k) [0;0;k/J1 * y(2) - k/J1 * y(1); T0/J2 - b*y(4)/J2 - (k/J2)*(y(2)-y(1))]; %my ode
err = []; % initialize error vector
for b = 0:0.01:10 %loop over different b
for k = 0:0.1:100 %loop over different k
[t,y] = ode45(@(t,y) test(t,y,b,k) , [0:0.01:10] , [0,0,0,0]); %solve my ode
errbk = abs( norm( T{:,3} - y(:,4) ) ); % compute error from the analytical solution 1
err = [err;b,k,errbk];
end
end
% then i would find b and k with the minimum errb and errk
  2 个评论
Walter Roberson
Walter Roberson 2021-10-28
What should happen if the entry with minimum errb is not the entry with the minimum errk ?
Nader Mohamed
Nader Mohamed 2021-10-28
You're right. I edited the code to compute the error only compared to one analytical solution
My idea is then after having the vector err - find the min(errbk) and output the corrisponding b and k

请先登录,再进行评论。

回答(1 个)

Star Strider
Star Strider 2021-10-28
There are several examples on fitting differential equations to data, one being Coefficient estimation for a system of coupled ODEs — not trivial, however also not difficult.
.
  2 个评论
Nader Mohamed
Nader Mohamed 2021-10-28
Thanks! I understand that with lsqcurvefit I can fit the data with the results, but I still don't understand how can I retrieve b and k from that
Star Strider
Star Strider 2021-10-28
It would be relatively straightforward to adapt my code to calculate ‘b’ and ‘k’. They become parameters, so the ‘kinetics’ function becomes —
function C=kinetics(theta,t,T0,J2)
% c0=[1;0;0;0];
c0 = theta(3:6);
[T,Cv]=ode45(@DifEq,t,c0);
%
function dC=DifEq(t,c) % k = theta(1), b = theta(2)
dcdt=zeros(4,1);
dcdt(1)= 0;
dcdt(2)= 0;
dcdt(3)= theta(1)/J1 * y(2) - theta(1)/J1 * y(1);
dcdt(4)= T0/J2 - theta(2)*y(4)/J2 - (theta(1)/J2)*(y(2)-y(1));
dC=dcdt;
end
C=Cv;
end
This is my best guess on how to implement your system of differential equations with my existing code. Here, the parameter vector ‘theta’ has ‘k’ and ‘b’ as the first two elements, and the initial conditions for the system of differential equations as the last four elements. All will be estimated by the optimisation funciton (lsqcurvefit, ga, or others). It may be necessary to edit this, because I do not understand what the objective is.
The ‘C’ output will be the result that matches the data to be regressed against. All will be matrices of column vectors.
.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

产品


版本

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by