Solving Constrained Convex Optimization Problems Using Gradient Descent
6 次查看(过去 30 天)
显示 更早的评论
The paper only says that the optimal value can be obtained by the gradient descent method. I downloaded some code about gradient descent on MATLAB, and the objective functions are relatively simple, such as f = x^2 + y^2 + 5, and the optimization problems are all unconstrained. How can I solve the following problem using gradient descent? Is there an example to refer to?
采纳的回答
Alan Weiss
2022-1-26
That problem does not look unconstrained to me: you have two sets of constraints listed.
But the main point is twofold: there is no built-in code for gradient descent in Optimization Toolbox™, but there are several solvers (such as fmincon, which Torsten mentioned) that can address constrained nonlinear optimization problems.
You might find the Problem-Based Optimization Workflow to be the most natural way to formulate and solve your problem.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Nonlinear Optimization 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!