resampling an unbalanced dataset
3 次查看(过去 30 天)
显示 更早的评论
Hi, I have a dataset which has 2 classes(churn='False.' and churn='True.'). It is unbalanced because 700 of the 5000 sample is churn='False.' Is there a way to balance that distribution? Thank you in advance.
0 个评论
采纳的回答
Image Analyst
2015-1-3
Throw out all but 700 items where churn = true??? Then you'd have 700 false ones and 700 true ones. If not, then tell us in more detail what "balance" means to you.
3 个评论
Image Analyst
2015-1-3
Uh, sure, if that's what you want. If it's in a table, you can automate it somewhat, like
% Find out which rows are true.
trueRows = find(t.churn);
% Take only the first 700:
trueRows = trueRows(1:max([length(trueRows), 700]));
% Find out which rows are false - we want to keep all those.
falseRows = find(t.churn == false);
% Combine the false and true rows into one list of indexes.
rowsToExtract = sort([falseRows, trueRows]);
% Now extract only the first 700 true, but all the false.
t = t(rowsToExtract );
or something like that. You might have to debug it some.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Data Type Identification 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!