Saving figures and automatic legend
5 次查看(过去 30 天)
显示 更早的评论
I tried this
ax = gca;
exportgraphics(ax,'myplot.png','Resolution',300)
but is saving only the last plot. I also want automatic legend. Below is my code:
%% initialization
clear
clc
close all
%% Model parameters
global k1 eta1 alpha3 gamma1 d N Phi xi h A B C G
k1 = 6*10^(-12); % elastic constant
eta1 = 0.0240; % viscosity
xi = -1; % activity parameter
alpha3 = -0.001104; % viscosity
gamma1 = 0.1093; % viscosity
Theta = 0.0001;
% Simplify model parameters
A = k1/gamma1;
B = alpha3/gamma1;
C = eta1 - alpha3*B;
G = alpha3*A;
d = 0.0002;
N = 200;
%% Numerical setup
% step size
h = d/N;
% t span
tspan = [0 100];
% range of z
%z=linspace(0,d/2,N+1)
z=linspace(0,d,N+1);
% initial conditions
theta0 = Theta*sin(pi*z/d);
v0 = zeros(1,N+1);
theta0_int=theta0(2:N);
v0_int=v0(2:N);
u0 = [theta0_int'; v0_int'];
% Constant mass matrix M: We use M to represent the left hand side of the system of equations.
M1=eye(N-1,N-1);
M2=zeros(N-1,N-1);
M=[M1 M2;M2 M2];
% Boundary Conditions
Phi = 0;
%% ode solver
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',1e-6);
[t,y] = ode15s(@lcode1,tspan,u0, options);
theta_middle = y(:,N/2); % theta at the middle of the layer (i.e., z=d/2)
% Extract the solution for theta and v
theta = [Phi*ones(length(t), 1) y(:,1:N-1) Phi*ones(length(t), 1)];
v = [zeros(length(t), 1) y(:,N:(2*N-2)) zeros(length(t), 1)];
%% Plot the solution.
figure
subplot(2,2,1)
plot(z, theta(1:5,:))
xlabel('z(\mum)')
ylabel('\theta(z,t)(rad)')
title('Director angle','FontSize',10)
%[xmin(z) xmax(z) ymin(theta) ymax(theta)];
subplot(2,2,2)
plot(z, v(1:5,:))
xlabel('z(\mum)')
ylabel('v(z,t)(m/s)')
title('Flow velocity')
%[xmin(z) xmax(z) ymin(theta) ymax(theta)];
subplot(2,2,3)
plot(t,theta_middle)
xlabel('z(\mum)')
ylabel('\theta(d/2,t)(rad)')
title('Director angle at the middle of the layer', 'FontSize',6)
ax = gca;
% Requires R2020a or later
exportgraphics(ax,'modelplot.png','Resolution',300)
%% Functions
% Right hand side of the ODEs: F(U)
function rhsode = lcode1(t,y)
global Phi xi h A B C G N
% initialize theta and v
theta = y(1:(N-1));
v = y(N:(2*N-2));
rhsode(1,1) = (A/(h^2))*(theta(2)-2*theta(1)+ Phi) - (B/(2*h))*(v(2)-0);
% for all other internal positions 0<z<d
for i=2:(N-2)
rhsode(i,1) = (A/(h^2))*(theta(i+1)-2*theta(i)+theta(i-1)) - (B/(2*h))*(v(i+1)-v(i-1));
end
% for the positon to the left of the right hand boundary z=d
rhsode(N-1,1) = (A/(h^2))*(Phi-2*theta(N-1)+ theta(N-2)) - (B/(2*h))*(0-v(N-2));
rhsode(N,1) = (G/(h^3))*(-Phi + 3*theta(1) - 3*theta(2) + theta(3)) + (C/(h^2))*(v(2) -2*v(1)+ 0) + (xi/(2*h))*(theta(2)-Phi);
rhsode(N+1,1) = (G/(2*h^3))*(Phi - 2*theta(1) + 2*theta(3)- theta(4)) + (C/(h^2))*(v(3) -2*v(2) + v(1)) + (xi/(2*h))*(theta(3)-theta(1));
% for all other internal positions 0<z<d
for i=(N+2):(2*N-4)
rhsode(i,1) = (G/(2*h^3))*(theta(i-2-(N-1)) - 2*theta(i-1-(N-1)) + 2*theta(i+1-(N-1))- theta(i+2-(N-1))) +(C/(h^2))*(v(i+1-(N-1)) -2*v(i-(N-1)) + v(i-1-(N-1))) + (xi/(2*h))*(theta(i+1-(N-1))-theta(i-1-(N-1)));
end
% for the two positons to the left of the right hand boundary z=d
rhsode(2*N-3,1) = (G/(2*h^3))*(theta(N-4) - 2*theta(N-3) + 2*theta(N-1) - Phi) +(C/(h^2))*(v(N-1) -2*v(N-2) + v(N-3)) + (xi/(2*h))*(theta(N-1)-theta(N-3));
rhsode(2*N-2,1) = (G/(h^3))*(-theta(N-3) + 3*theta(N-2) - 3*theta(N-1) + Phi) +(C/(h^2))*(0 -2*v(N-1) + v(N-2)) + (xi/(2*h))*(Phi-theta(N-2));
end
0 个评论
采纳的回答
dpb
2022-8-17
You only saved a handle to the current axes via gca at the end -- but you created three (3) axes via subplot
Save the handles of the axes when you create them and then export each in turn, using the array of axes handles you just saved at the end.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Graphics Object Programming 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!