Non linear Newton iteration method

1 次查看(过去 30 天)
Syed Abdul Rafay
Syed Abdul Rafay 2022-10-27
编辑: Jan 2022-10-29
Can anyone tell me problem in this code? i want to solve newton Iteration method where
X(i+1) = x(i)-Jcbi inv*F(i)
function NL_Newtons_Iteration(x0,y0,TC)
Tstart = cputime;
if nargin<4, x0=0; y0=0; z0=0; TC=10^-4; end
x1(1)=x0; x2(1)=y0; x3(1)=z0; i=0; error=TC+1;
X{1}=[x1(1); x2(1); x3(1)];
while(error>TC)
Jcbi=jacobian([F1,F2,F3],[x1,x2,x3]);
Jcbi_inv=inv(Jcbi);
X{i+2}=X{i+1}-Jcbi_inv*[F1(x1(i+1), x2(i+1), x3(i+1)); F2(x1(i+1), x2(i+1), x3(i+1)); F3(x1(i+1), x2(i+1), x3(i+1))];
Ex=100*abs((x1(i+1)-x1(i))/x1(i+1));
Ey=100*abs((x2(i+1)-x2(i))/x2(i+1)); %if 3 variables: E=[Ex Ey Ez];error=max(E)
Ez=100*abs((x3(i+1)-x3(i))/x3(i+1));
E=[Ex Ey Ez];
error=max(E);
i=i+1;
end
fprintf('After %d iterations an approimate solution is',i);
soln=[x1(i+1); x2(i+1); x3(i+1)]
TEnd = cputime - Tstart
end
function F1=F1(x1,x2,x3)
F1=((-3/5)*x1)+((1/4)*x2)+((1/4)*cos(x3))+1.43;
end
function F2=F2(x1,x2,x3)
F2=((1/4)*x1)-((3/5)*x2)-((1/4)*sin(x3))-1.24;
end
function F3=F3(x1,x2,x3)
F3=((1/4)*sin(x1))-((1/4)*exp(-x2))-((3/5)*x3)-1.17;
end
I am getting errors when I run the code. The x1 x2 x3 are x y z.
  1 个评论
Syed Abdul Rafay
Syed Abdul Rafay 2022-10-29
Not enough input arguments.
Error in test>F1 (line 22)
F1=((-3/5)*x1)+((1/4)*x2)+((1/4)*cos(x3))+1.43;
Error in test (line 7)
Jcbi=jacobian([F1,F2,F3],[x1,x2,x3]);
These are the errors

请先登录,再进行评论。

回答(1 个)

Jan
Jan 2022-10-29
编辑:Jan 2022-10-29
Similar to your other question, [F1,F2,F3] is not a function handle, but a vector. Here you call F1, F2 and F3 without inputs.
Better:
function Y = F123(x1,x2,x3)
Y = [((-3/5)*x1)+((1/4)*x2)+((1/4)*cos(x3))+1.43; ...
((1/4)*x1)-((3/5)*x2)-((1/4)*sin(x3))-1.24; ...
((1/4)*sin(x1))-((1/4)*exp(-x2))-((3/5)*x3)-1.17];
end
And in the loop:
Jcbi = jacobian(@F123, [x1,x2,x3]); % Failing!
But this still does not match the needs of the jacobian function, which requires symbolic input.

类别

Help CenterFile Exchange 中查找有关 Programming 的更多信息

产品


版本

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by